{"title":"Light-trapping Optimisation Framework Based on Fourier-space Grating Design for Coupling to Waveguide Modes in an Ultra-thin Solar Cell","authors":"Eduardo Camarillo Abad, H. Joyce, L. Hirst","doi":"10.1109/PVSC45281.2020.9300845","DOIUrl":null,"url":null,"abstract":"Ever-thinner solar cells are currently of interest to the photovoltaics community and demand the introduction of light-trapping techniques to retain a competitive photovoltaic performance. This work presents a framework for a guided light-trapping design applied to an ultra-thin (< 100 nm) solar cell. The framework is based on a fundamental study of the waveguide modes supported by a realistic device architecture. Mode-coupling is ensured by introducing a scattering layer according to its Fourier spectrum. The framework can be applied to any device architecture and for single or multiple wavelength absorption enhancement, having the flexibility to attain high-efficiency in ever-thinner photovoltaics.","PeriodicalId":6773,"journal":{"name":"2020 47th IEEE Photovoltaic Specialists Conference (PVSC)","volume":"55 1","pages":"1176-1182"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 47th IEEE Photovoltaic Specialists Conference (PVSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC45281.2020.9300845","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Ever-thinner solar cells are currently of interest to the photovoltaics community and demand the introduction of light-trapping techniques to retain a competitive photovoltaic performance. This work presents a framework for a guided light-trapping design applied to an ultra-thin (< 100 nm) solar cell. The framework is based on a fundamental study of the waveguide modes supported by a realistic device architecture. Mode-coupling is ensured by introducing a scattering layer according to its Fourier spectrum. The framework can be applied to any device architecture and for single or multiple wavelength absorption enhancement, having the flexibility to attain high-efficiency in ever-thinner photovoltaics.