{"title":"Micro-opinion Sentiment Intensity Analysis and Summarization in Online Videos","authors":"Amir Zadeh","doi":"10.1145/2818346.2823317","DOIUrl":null,"url":null,"abstract":"There has been substantial progress in the field of text based sentiment analysis but little effort has been made to incorporate other modalities. Previous work in sentiment analysis has shown that using multimodal data yields to more accurate models of sentiment. Efforts have been made towards expressing sentiment as a spectrum of intensity rather than just positive or negative. Such models are useful not only for detection of positivity or negativity, but also giving out a score of how positive or negative a statement is. Based on the state of the art studies in sentiment analysis, prediction in terms of sentiment score is still far from accurate, even in large datasets [27]. Another challenge in sentiment analysis is dealing with small segments or micro opinions as they carry less context than large segments thus making analysis of the sentiment harder. This paper presents a Ph.D. thesis shaped towards comprehensive studies in multimodal micro-opinion sentiment intensity analysis.","PeriodicalId":20486,"journal":{"name":"Proceedings of the 2015 ACM on International Conference on Multimodal Interaction","volume":"43 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2015-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 ACM on International Conference on Multimodal Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2818346.2823317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26
Abstract
There has been substantial progress in the field of text based sentiment analysis but little effort has been made to incorporate other modalities. Previous work in sentiment analysis has shown that using multimodal data yields to more accurate models of sentiment. Efforts have been made towards expressing sentiment as a spectrum of intensity rather than just positive or negative. Such models are useful not only for detection of positivity or negativity, but also giving out a score of how positive or negative a statement is. Based on the state of the art studies in sentiment analysis, prediction in terms of sentiment score is still far from accurate, even in large datasets [27]. Another challenge in sentiment analysis is dealing with small segments or micro opinions as they carry less context than large segments thus making analysis of the sentiment harder. This paper presents a Ph.D. thesis shaped towards comprehensive studies in multimodal micro-opinion sentiment intensity analysis.