Solution Structures of an Electrical Transmission Line Model with Bifurcation and Chaos in Hamiltonian Dynamics

Jian-ming Qi, Q. Cui, Le Zhang, Yiqun Sun
{"title":"Solution Structures of an Electrical Transmission Line Model with Bifurcation and Chaos in Hamiltonian Dynamics","authors":"Jian-ming Qi, Q. Cui, Le Zhang, Yiqun Sun","doi":"10.1142/s0218127423501080","DOIUrl":null,"url":null,"abstract":"Employing the Riccati–Bernoulli sub-ODE method (RBSM) and improved Weierstrass elliptic function method, we handle the proposed [Formula: see text]-dimensional nonlinear fractional electrical transmission line equation (NFETLE) system in this paper. An infinite sequence of solutions and Weierstrass elliptic function solutions may be obtained through solving the NFETLE. These new exact and solitary wave solutions are derived in the forms of trigonometric function, Weierstrass elliptic function and hyperbolic function. The graphs of soliton solutions of the NFETLE describe the dynamics of the solutions in the figures. We also discuss elaborately the effects of fraction and arbitrary parameters on a part of obtained soliton solutions which are presented graphically. Moreover, we also draw meaningful conclusions via a comparison of our partially explored areas with other different fractional derivatives. From our perspectives, by rewriting the equation as Hamiltonian system, we study the phase portrait and bifurcation of the system about NFETLE and we also for the first time discuss sensitivity of the system and chaotic behaviors. To our best knowledge, we discover a variety of new solutions that have not been reported in existing articles [Formula: see text], [Formula: see text]. The most important thing is that there are iterative ideas in finding the solution process, which have not been seen before from relevant articles such as [Tala-Tebue et al., 2014; Fendzi-Donfack et al., 2018; Ashraf et al., 2022; Ndzana et al., 2022; Halidou et al., 2022] in seeking for exact solutions about NFETLE.","PeriodicalId":13688,"journal":{"name":"Int. J. Bifurc. Chaos","volume":"31 1","pages":"2350108:1-2350108:34"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Bifurc. Chaos","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218127423501080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Employing the Riccati–Bernoulli sub-ODE method (RBSM) and improved Weierstrass elliptic function method, we handle the proposed [Formula: see text]-dimensional nonlinear fractional electrical transmission line equation (NFETLE) system in this paper. An infinite sequence of solutions and Weierstrass elliptic function solutions may be obtained through solving the NFETLE. These new exact and solitary wave solutions are derived in the forms of trigonometric function, Weierstrass elliptic function and hyperbolic function. The graphs of soliton solutions of the NFETLE describe the dynamics of the solutions in the figures. We also discuss elaborately the effects of fraction and arbitrary parameters on a part of obtained soliton solutions which are presented graphically. Moreover, we also draw meaningful conclusions via a comparison of our partially explored areas with other different fractional derivatives. From our perspectives, by rewriting the equation as Hamiltonian system, we study the phase portrait and bifurcation of the system about NFETLE and we also for the first time discuss sensitivity of the system and chaotic behaviors. To our best knowledge, we discover a variety of new solutions that have not been reported in existing articles [Formula: see text], [Formula: see text]. The most important thing is that there are iterative ideas in finding the solution process, which have not been seen before from relevant articles such as [Tala-Tebue et al., 2014; Fendzi-Donfack et al., 2018; Ashraf et al., 2022; Ndzana et al., 2022; Halidou et al., 2022] in seeking for exact solutions about NFETLE.
哈密顿动力学中具有分岔和混沌的输电线路模型的解结构
本文采用riccti - bernoulli子ode方法(RBSM)和改进的Weierstrass椭圆函数方法,处理了所提出的[公式:见文]-维非线性分数阶输电线方程(NFETLE)系统。通过求解NFETLE可以得到无穷级数的解和weerstrass椭圆函数解。这些新的精确和孤立波解分别以三角函数、weerstrass椭圆函数和双曲函数的形式导出。NFETLE的孤子解的图形描述了图中解的动力学。我们还详细讨论了分数和任意参数对得到的部分孤子解的影响。此外,我们还通过比较我们部分探索的领域与其他不同的分数导数得出有意义的结论。从我们的角度出发,通过将方程改写为哈密顿系统,我们研究了NFETLE系统的相画像和分岔,并首次讨论了系统的灵敏度和混沌行为。据我们所知,我们发现了现有文章中没有报道的各种新的解决方案[公式:见文本],[公式:见文本]。最重要的是,在寻找解决方案的过程中有迭代的想法,这在之前的相关文章中没有见过,如[Tala-Tebue et al., 2014;Fendzi-Donfack et al., 2018;Ashraf et al., 2022;Ndzana et al., 2022;Halidou et al., 2022]寻求NFETLE的精确解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信