Stochastic solution for Cauchy one-dimensional advection model in mean square calculus

M.T. Yassen, M.A. Sohaly, I.M. Elbaz
{"title":"Stochastic solution for Cauchy one-dimensional advection model in mean square calculus","authors":"M.T. Yassen,&nbsp;M.A. Sohaly,&nbsp;I.M. Elbaz","doi":"10.1016/j.jaubas.2017.07.002","DOIUrl":null,"url":null,"abstract":"<div><p>This work is concerned with the discussion of the numerical approximation for random Cauchy transport model in one dimension. The random (forward time, backward space) finite difference scheme is used to find the stochastic solution. The impression of the consistency and the random von-Neumann stability technique under the mean square sense are studied. Using some examples, we can support our main objective of this model statistically.</p></div>","PeriodicalId":17232,"journal":{"name":"Journal of the Association of Arab Universities for Basic and Applied Sciences","volume":"24 ","pages":"Pages 263-270"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jaubas.2017.07.002","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Association of Arab Universities for Basic and Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1815385217300433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This work is concerned with the discussion of the numerical approximation for random Cauchy transport model in one dimension. The random (forward time, backward space) finite difference scheme is used to find the stochastic solution. The impression of the consistency and the random von-Neumann stability technique under the mean square sense are studied. Using some examples, we can support our main objective of this model statistically.

均方微积分中柯西一维平流模型的随机解
本文讨论了一维随机柯西输运模型的数值逼近问题。采用随机(时间前向,空间后向)有限差分格式求随机解。研究了均方意义下的一致性印象和随机冯-诺伊曼稳定技术。通过一些例子,我们可以在统计上支持这个模型的主要目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信