Piezoelectric‐Driven Self‐Sensing Leaf‐Mimic Actuator Enabled by Integration of a Self‐Healing Dielectric Elastomer and a Piezoelectric Composite

Min Pan, Chenggang Yuan, Tom Pickford, Jeff Tian, Christopher Ellingford, Ning Zhou, C. Bowen, C. Wan
{"title":"Piezoelectric‐Driven Self‐Sensing Leaf‐Mimic Actuator Enabled by Integration of a Self‐Healing Dielectric Elastomer and a Piezoelectric Composite","authors":"Min Pan, Chenggang Yuan, Tom Pickford, Jeff Tian, Christopher Ellingford, Ning Zhou, C. Bowen, C. Wan","doi":"10.1002/aisy.202000248","DOIUrl":null,"url":null,"abstract":"Soft robots and devices exploit highly deformable materials that are capable of changes in shape to allow conformable physical contact for controlled manipulation. While soft robots are resilient to mechanical impact, they are susceptible to mechanical damage, such as tears and punctures. The development of self‐healing materials and actuators continues to attract increasing interest, in particular, with respect to integrating self‐healing polymers to create bioinspired soft self‐healing devices. Herein, a novel piezoelectric‐driven self‐healing leaf‐motion mimic actuator is designed by combining a thermoplastic methyl thioglycolate–modified styrene–butadiene–styrene (MGSBS) elastomer with a piezoelectric macrofiber composite (MFC) for self‐sensing applications. This article is the first demonstration of a self‐sensing and self‐healing actuator‐sensor system, which is driven by a piezoelectric actuator and can mimic leaf motion. The leaf‐motion actuator combines built‐in dynamic sensing and room‐temperature self‐healing capabilities to restore macroscale cutting damage with an intrinsically high bandwidth of up to 10 kHz. The feasibility and potential of the new actuator for use in complex soft autonomous systems are demonstrated. These new results help to address the emerging influence of self‐healing soft actuators and the challenges of sensing, actuation, and damage resistance in soft robotics.","PeriodicalId":7187,"journal":{"name":"Advanced Intelligent Systems","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/aisy.202000248","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Soft robots and devices exploit highly deformable materials that are capable of changes in shape to allow conformable physical contact for controlled manipulation. While soft robots are resilient to mechanical impact, they are susceptible to mechanical damage, such as tears and punctures. The development of self‐healing materials and actuators continues to attract increasing interest, in particular, with respect to integrating self‐healing polymers to create bioinspired soft self‐healing devices. Herein, a novel piezoelectric‐driven self‐healing leaf‐motion mimic actuator is designed by combining a thermoplastic methyl thioglycolate–modified styrene–butadiene–styrene (MGSBS) elastomer with a piezoelectric macrofiber composite (MFC) for self‐sensing applications. This article is the first demonstration of a self‐sensing and self‐healing actuator‐sensor system, which is driven by a piezoelectric actuator and can mimic leaf motion. The leaf‐motion actuator combines built‐in dynamic sensing and room‐temperature self‐healing capabilities to restore macroscale cutting damage with an intrinsically high bandwidth of up to 10 kHz. The feasibility and potential of the new actuator for use in complex soft autonomous systems are demonstrated. These new results help to address the emerging influence of self‐healing soft actuators and the challenges of sensing, actuation, and damage resistance in soft robotics.
压电驱动的自传感叶片模拟驱动器由自愈合介电弹性体和压电复合材料集成而成
软机器人和设备利用高度可变形的材料,这些材料能够改变形状,从而使控制操作的物理接触符合要求。虽然软体机器人对机械冲击有弹性,但它们很容易受到机械损伤,比如撕裂和穿刺。自修复材料和致动器的发展继续吸引越来越多的兴趣,特别是在集成自修复聚合物以创建仿生软自修复装置方面。本文设计了一种新型压电驱动的自修复叶片运动模拟驱动器,该驱动器将热塑性甲基巯基乙酸酯改性苯乙烯-丁二烯-苯乙烯(MGSBS)弹性体与用于自传感应用的压电超纤维复合材料(MFC)结合在一起。本文首次展示了一种自我感知和自我修复的致动器传感器系统,该系统由压电致动器驱动,可以模拟叶子的运动。叶片运动执行器结合了内置的动态传感和室温自修复能力,以恢复宏观尺度切割损伤,具有高达10 kHz的固有高带宽。验证了该驱动器应用于复杂软自主系统的可行性和潜力。这些新结果有助于解决自修复软致动器的新兴影响以及软机器人中传感、致动和抗损伤性的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信