Stillman’s question for twisted commutative algebras

IF 0.3 4区 数学 Q4 MATHEMATICS
Karthik Ganapathy
{"title":"Stillman’s question for twisted commutative algebras","authors":"Karthik Ganapathy","doi":"10.1216/jca.2022.14.315","DOIUrl":null,"url":null,"abstract":"Let $\\mathbf{A}_{n, m}$ be the polynomial ring $\\text{Sym}(\\mathbf{C}^n \\otimes \\mathbf{C}^m)$ with the natural action of $\\mathbf{GL}_m(\\mathbf{C})$. We construct a family of $\\mathbf{GL}_m(\\mathbf{C})$-stable ideals $J_{n, m}$ in $\\mathbf{A}_{n, m}$, each equivariantly generated by one homogeneous polynomial of degree $2$. Using the Ananyan-Hochster principle, we show that the regularity of this family is unbounded. This negatively answers a question raised by Erman-Sam-Snowden on a generalization of Stillman's conjecture.","PeriodicalId":49037,"journal":{"name":"Journal of Commutative Algebra","volume":"15 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2020-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Commutative Algebra","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1216/jca.2022.14.315","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let $\mathbf{A}_{n, m}$ be the polynomial ring $\text{Sym}(\mathbf{C}^n \otimes \mathbf{C}^m)$ with the natural action of $\mathbf{GL}_m(\mathbf{C})$. We construct a family of $\mathbf{GL}_m(\mathbf{C})$-stable ideals $J_{n, m}$ in $\mathbf{A}_{n, m}$, each equivariantly generated by one homogeneous polynomial of degree $2$. Using the Ananyan-Hochster principle, we show that the regularity of this family is unbounded. This negatively answers a question raised by Erman-Sam-Snowden on a generalization of Stillman's conjecture.
扭曲交换代数的Stillman问题
设$\mathbf{A}_{n, m}$为多项式环$\text{Sym}(\mathbf{C}^n \otimes \mathbf{C}^m)$,其自然动作为$\mathbf{GL}_m(\mathbf{C})$。我们构造了$\mathbf{GL}_m(\mathbf{C})$-稳定理想$J_{n, m}$族,每个理想$J_{n, m}$是由$ $2次的齐次多项式等价生成的。利用Ananyan-Hochster原理,证明了该族的正则性是无界的。这否定地回答了Erman-Sam-Snowden对Stillman猜想的概括提出的一个问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
16.70%
发文量
28
审稿时长
>12 weeks
期刊介绍: Journal of Commutative Algebra publishes significant results in the area of commutative algebra and closely related fields including algebraic number theory, algebraic geometry, representation theory, semigroups and monoids. The journal also publishes substantial expository/survey papers as well as conference proceedings. Any person interested in editing such a proceeding should contact one of the managing editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信