Stillman’s question for twisted commutative algebras

Pub Date : 2020-07-06 DOI:10.1216/jca.2022.14.315
Karthik Ganapathy
{"title":"Stillman’s question for twisted commutative algebras","authors":"Karthik Ganapathy","doi":"10.1216/jca.2022.14.315","DOIUrl":null,"url":null,"abstract":"Let $\\mathbf{A}_{n, m}$ be the polynomial ring $\\text{Sym}(\\mathbf{C}^n \\otimes \\mathbf{C}^m)$ with the natural action of $\\mathbf{GL}_m(\\mathbf{C})$. We construct a family of $\\mathbf{GL}_m(\\mathbf{C})$-stable ideals $J_{n, m}$ in $\\mathbf{A}_{n, m}$, each equivariantly generated by one homogeneous polynomial of degree $2$. Using the Ananyan-Hochster principle, we show that the regularity of this family is unbounded. This negatively answers a question raised by Erman-Sam-Snowden on a generalization of Stillman's conjecture.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1216/jca.2022.14.315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let $\mathbf{A}_{n, m}$ be the polynomial ring $\text{Sym}(\mathbf{C}^n \otimes \mathbf{C}^m)$ with the natural action of $\mathbf{GL}_m(\mathbf{C})$. We construct a family of $\mathbf{GL}_m(\mathbf{C})$-stable ideals $J_{n, m}$ in $\mathbf{A}_{n, m}$, each equivariantly generated by one homogeneous polynomial of degree $2$. Using the Ananyan-Hochster principle, we show that the regularity of this family is unbounded. This negatively answers a question raised by Erman-Sam-Snowden on a generalization of Stillman's conjecture.
分享
查看原文
扭曲交换代数的Stillman问题
设$\mathbf{A}_{n, m}$为多项式环$\text{Sym}(\mathbf{C}^n \otimes \mathbf{C}^m)$,其自然动作为$\mathbf{GL}_m(\mathbf{C})$。我们构造了$\mathbf{GL}_m(\mathbf{C})$-稳定理想$J_{n, m}$族,每个理想$J_{n, m}$是由$ $2次的齐次多项式等价生成的。利用Ananyan-Hochster原理,证明了该族的正则性是无界的。这否定地回答了Erman-Sam-Snowden对Stillman猜想的概括提出的一个问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信