Heuristic method to determine lucky k-polynomials for k-colorable graphs

IF 0.3 Q4 COMPUTER SCIENCE, THEORY & METHODS
J. Kok
{"title":"Heuristic method to determine lucky k-polynomials for k-colorable graphs","authors":"J. Kok","doi":"10.2478/ausi-2019-0014","DOIUrl":null,"url":null,"abstract":"Abstract The existence of edges is a huge challenge with regards to determining lucky k-polynomials of simple connected graphs in general. In this paper the lucky 3-polynomials of path and cycle graphs of order, 3 ≤ n ≤ 8 are presented as the basis for the heuristic method to determine the lucky k-polynomials for k-colorable graphs. The difficulty of adjacency with graphs is illustrated through these elementary graph structures. The results are also illustratively compared with the results for null graphs (edgeless graphs). The paper could serve as a basis for finding recurrence results through innovative methodology.","PeriodicalId":41480,"journal":{"name":"Acta Universitatis Sapientiae Informatica","volume":"19 1","pages":"206 - 214"},"PeriodicalIF":0.3000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Universitatis Sapientiae Informatica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ausi-2019-0014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract The existence of edges is a huge challenge with regards to determining lucky k-polynomials of simple connected graphs in general. In this paper the lucky 3-polynomials of path and cycle graphs of order, 3 ≤ n ≤ 8 are presented as the basis for the heuristic method to determine the lucky k-polynomials for k-colorable graphs. The difficulty of adjacency with graphs is illustrated through these elementary graph structures. The results are also illustratively compared with the results for null graphs (edgeless graphs). The paper could serve as a basis for finding recurrence results through innovative methodology.
确定k色图幸运k多项式的启发式方法
一般来说,边的存在性对于确定简单连通图的幸运k多项式是一个巨大的挑战。本文给出了阶为3≤n≤8的路径图和循环图的幸运3多项式,作为确定k个可色图的幸运k多项式的启发式方法的基础。通过这些基本图结构说明了图邻接的困难。结果还与空图(无边图)的结果进行了说明性比较。本文可作为通过创新方法寻找递归结果的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Universitatis Sapientiae Informatica
Acta Universitatis Sapientiae Informatica COMPUTER SCIENCE, THEORY & METHODS-
自引率
0.00%
发文量
9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信