{"title":"Food web complexity enhances community stability and climate regulation in a geophysiological model","authors":"S. Harding","doi":"10.3402/TELLUSB.V51I4.16489","DOIUrl":null,"url":null,"abstract":"A central debate in community ecology concerns the relationship between the complexity of communities and their stability. How does the richness of food web structures affect their resistance and resilience to perturbation? Most mathematical models of communities have shown that stability declines as complexity increases but so far, modellers have not included the material environment in their calculations. Here an otherwise conventional community ecology model is described, which includes feedback between the biota and their climate. This “geophysiological” model is stable in the sense that it resists perturbation. The more complex the community included in the model, the greater its stability in terms of both resistance to perturbation and rate of response to perturbation. This is a realistic way to model the naturalworld because organisms cannot avoid feedback to and from their material environment. DOI: 10.1034/j.1600-0889.1999.t01-3-00006.x","PeriodicalId":54432,"journal":{"name":"Tellus Series B-Chemical and Physical Meteorology","volume":"38 1","pages":"815-829"},"PeriodicalIF":2.3000,"publicationDate":"1999-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tellus Series B-Chemical and Physical Meteorology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3402/TELLUSB.V51I4.16489","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 20
Abstract
A central debate in community ecology concerns the relationship between the complexity of communities and their stability. How does the richness of food web structures affect their resistance and resilience to perturbation? Most mathematical models of communities have shown that stability declines as complexity increases but so far, modellers have not included the material environment in their calculations. Here an otherwise conventional community ecology model is described, which includes feedback between the biota and their climate. This “geophysiological” model is stable in the sense that it resists perturbation. The more complex the community included in the model, the greater its stability in terms of both resistance to perturbation and rate of response to perturbation. This is a realistic way to model the naturalworld because organisms cannot avoid feedback to and from their material environment. DOI: 10.1034/j.1600-0889.1999.t01-3-00006.x
期刊介绍:
Tellus B: Chemical and Physical Meteorology along with its sister journal Tellus A: Dynamic Meteorology and Oceanography, are the international, peer-reviewed journals of the International Meteorological Institute in Stockholm, an independent non-for-profit body integrated into the Department of Meteorology at the Faculty of Sciences of Stockholm University, Sweden. Aiming to promote the exchange of knowledge about meteorology from across a range of scientific sub-disciplines, the two journals serve an international community of researchers, policy makers, managers, media and the general public.