Evaluation of tribological behavior of a circulation oil with ionic liquid and hybrid additives

IF 1.6 3区 工程技术 Q3 ENGINEERING, MECHANICAL
Thi-Na Ta, J. Horng
{"title":"Evaluation of tribological behavior of a circulation oil with ionic liquid and hybrid additives","authors":"Thi-Na Ta, J. Horng","doi":"10.1177/13506501231198571","DOIUrl":null,"url":null,"abstract":"In this study, the synergistic effects of methyltrioctylammonium bis(trifluoromethylsulfonyl)imide [N1888] [NTf2] ionic liquid (IL) with zinc dialkyldithiophosphate (ZDDP) and zinc oxide (ZnO) nanoparticles (NPs) as hybrid additives in a circulation oil for steel–steel contacts at different temperatures. The wear test results indicated that the additions of single additives (IL, ZDDP, and ZnO NPs) could enhance the tribological performance of the circulation oil. Among these additives, the IL exhibited the most effective at the same weight concentration blended into the tested oil. The mixture of IL and ZDDP showed superior friction-reducing and wear-reducing properties compared to the IL + ZnO formulation. The hybrid additive formulation consisting of 0.5 wt% IL, 0.25 wt% ZDDP, and 0.25 wt% ZnO NPs exhibited excellent tribological properties at higher temperatures in the boundary lubrication regime. Analysis using scanning electron microscopy/energy dispersive X-ray reveals that all single additives contribute to the formation of a tribofilm wear mechanism. However, the role of ZnO NPs in the hybrid additive conditions was changed from the most likely tribosintering effect to the most likely nano bearing effect at 100 °C. The interactions among IL, ZDDP, and NPs examined in this study can provide fundamental insights for the development of future lubricants.","PeriodicalId":20570,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/13506501231198571","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, the synergistic effects of methyltrioctylammonium bis(trifluoromethylsulfonyl)imide [N1888] [NTf2] ionic liquid (IL) with zinc dialkyldithiophosphate (ZDDP) and zinc oxide (ZnO) nanoparticles (NPs) as hybrid additives in a circulation oil for steel–steel contacts at different temperatures. The wear test results indicated that the additions of single additives (IL, ZDDP, and ZnO NPs) could enhance the tribological performance of the circulation oil. Among these additives, the IL exhibited the most effective at the same weight concentration blended into the tested oil. The mixture of IL and ZDDP showed superior friction-reducing and wear-reducing properties compared to the IL + ZnO formulation. The hybrid additive formulation consisting of 0.5 wt% IL, 0.25 wt% ZDDP, and 0.25 wt% ZnO NPs exhibited excellent tribological properties at higher temperatures in the boundary lubrication regime. Analysis using scanning electron microscopy/energy dispersive X-ray reveals that all single additives contribute to the formation of a tribofilm wear mechanism. However, the role of ZnO NPs in the hybrid additive conditions was changed from the most likely tribosintering effect to the most likely nano bearing effect at 100 °C. The interactions among IL, ZDDP, and NPs examined in this study can provide fundamental insights for the development of future lubricants.
离子液体和杂化添加剂对循环油摩擦学性能的影响
在本研究中,甲基三辛基胺双(三氟甲基磺酰基)亚胺[N1888] [NTf2]离子液体(IL)与二烷基二硫代磷酸锌(ZDDP)和氧化锌(ZnO)纳米颗粒(NPs)作为杂化添加剂在不同温度下的钢-钢接触循环油中的协同作用。磨损试验结果表明,添加单一添加剂(IL、ZDDP和ZnO NPs)可以提高循环油的摩擦学性能。在这些添加剂中,IL在相同质量浓度下混合到被试油中效果最好。与IL + ZnO相比,IL和ZDDP的混合物具有更好的减摩和减磨性能。由0.5 wt% IL, 0.25 wt% ZDDP和0.25 wt% ZnO NPs组成的杂化添加剂配方在边界润滑状态下具有优异的高温摩擦学性能。扫描电镜/能量色散x射线分析表明,所有单一添加剂都有助于摩擦膜磨损机制的形成。然而,ZnO NPs在杂化添加剂条件下的作用从最可能的摩擦烧结效应转变为最可能的纳米承载效应。本研究考察的IL、ZDDP和NPs之间的相互作用可以为未来润滑油的开发提供基础见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.20
自引率
5.00%
发文量
110
审稿时长
6.1 months
期刊介绍: The Journal of Engineering Tribology publishes high-quality, peer-reviewed papers from academia and industry worldwide on the engineering science associated with tribology and its applications. "I am proud to say that I have been part of the tribology research community for almost 20 years. That community has always seemed to me to be highly active, progressive, and closely knit. The conferences are well attended and are characterised by a warmth and friendliness that transcends national boundaries. I see Part J as being an important part of that community, giving us an outlet to publish and promote our scholarly activities. I very much look forward to my term of office as editor of your Journal. I hope you will continue to submit papers, help out with reviewing, and most importantly to read and talk about the work you will find there." Professor Rob Dwyer-Joyce, Sheffield University, UK This journal is a member of the Committee on Publication Ethics (COPE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信