{"title":"Con-text: text detection using background connectivity for fine-grained object classification","authors":"Sezer Karaoglu, J. V. Gemert, T. Gevers","doi":"10.1145/2502081.2502197","DOIUrl":null,"url":null,"abstract":"This paper focuses on fine-grained classification by detecting photographed text in images. We introduce a text detection method that does not try to detect all possible foreground text regions but instead aims to reconstruct the scene background to eliminate non-text regions. Object cues such as color, contrast, and objectiveness are used in corporation with a random forest classifier to detect background pixels in the scene. Results on two publicly available datasets ICDAR03 and a fine-grained Building subcategories of ImageNet shows the effectiveness of the proposed method.","PeriodicalId":20448,"journal":{"name":"Proceedings of the 21st ACM international conference on Multimedia","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21st ACM international conference on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2502081.2502197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20
Abstract
This paper focuses on fine-grained classification by detecting photographed text in images. We introduce a text detection method that does not try to detect all possible foreground text regions but instead aims to reconstruct the scene background to eliminate non-text regions. Object cues such as color, contrast, and objectiveness are used in corporation with a random forest classifier to detect background pixels in the scene. Results on two publicly available datasets ICDAR03 and a fine-grained Building subcategories of ImageNet shows the effectiveness of the proposed method.