Segmentation and classification of THCs on PCBAs

Daniel Herchenbach, Wei Li, Matthias Breier
{"title":"Segmentation and classification of THCs on PCBAs","authors":"Daniel Herchenbach, Wei Li, Matthias Breier","doi":"10.1109/INDIN.2013.6622858","DOIUrl":null,"url":null,"abstract":"The dramatic increase of electronic waste requires automatic recycling, including technologies from machine vision. A framework for segmentation and classification of THC (through-hole components) mounted on PCBAs is presented, using both RGB and depth frames from the Kinect sensor by Microsoft. A segmentation approach, combining local and global features in a flexible manner, is shown to optimize a freely definable cost function globally. We interleave segmentation and classification as we form the final components using a simple, yet robust shape model.","PeriodicalId":6312,"journal":{"name":"2013 11th IEEE International Conference on Industrial Informatics (INDIN)","volume":"2015 1","pages":"59-64"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 11th IEEE International Conference on Industrial Informatics (INDIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDIN.2013.6622858","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

The dramatic increase of electronic waste requires automatic recycling, including technologies from machine vision. A framework for segmentation and classification of THC (through-hole components) mounted on PCBAs is presented, using both RGB and depth frames from the Kinect sensor by Microsoft. A segmentation approach, combining local and global features in a flexible manner, is shown to optimize a freely definable cost function globally. We interleave segmentation and classification as we form the final components using a simple, yet robust shape model.
pcb上THCs的分割与分类
电子垃圾的急剧增加需要自动回收,包括机器视觉技术。采用微软Kinect传感器的RGB帧和深度帧,提出了一种对安装在pcb上的THC(通孔组件)进行分割和分类的框架。采用一种结合局部和全局特征的分割方法,对可自由定义的代价函数进行全局优化。我们交织分割和分类,因为我们形成使用一个简单的,但稳健的形状模型的最终组件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信