A Free Moving Boundary Problem for the Till Layer Below Large Ice Sheets

F. dell’Isola, K. Hutter
{"title":"A Free Moving Boundary Problem for the Till Layer Below Large Ice Sheets","authors":"F. dell’Isola, K. Hutter","doi":"10.1201/9780203755518-17","DOIUrl":null,"url":null,"abstract":"We formulate a free moving boundary problem for the till (i.e., soil + water) layer that may form below glaciers or large ice sheets and is thought to be responsible for their catastrophic advance when the water content makes such layers slippery against shear deformations. We indicate how the FMBP is formulated, specialize it to steady plane flow and deduce an ordinary differential equation which describes the distribution of the solid's volume fraction across the layer. This differential equation is second order and gives rise to a singular perturbation solution procedure. This problem can be analysed under the assumption that the fluid viscosity is a monotonic function of the solid's volume fraction. However, in this paper we prove that by choosing a constant fluid viscosity and vanishing thermodynamic pressure the emerging solid volume fraction turns out to be physically meaningless.","PeriodicalId":12357,"journal":{"name":"Free boundary problems:","volume":"363 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Free boundary problems:","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1201/9780203755518-17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We formulate a free moving boundary problem for the till (i.e., soil + water) layer that may form below glaciers or large ice sheets and is thought to be responsible for their catastrophic advance when the water content makes such layers slippery against shear deformations. We indicate how the FMBP is formulated, specialize it to steady plane flow and deduce an ordinary differential equation which describes the distribution of the solid's volume fraction across the layer. This differential equation is second order and gives rise to a singular perturbation solution procedure. This problem can be analysed under the assumption that the fluid viscosity is a monotonic function of the solid's volume fraction. However, in this paper we prove that by choosing a constant fluid viscosity and vanishing thermodynamic pressure the emerging solid volume fraction turns out to be physically meaningless.
大冰原下土层的自由移动边界问题
我们为可能在冰川或大冰盖下形成的土层(即土壤+水)层制定了一个自由移动的边界问题,当含水量使这些层在剪切变形时光滑时,被认为是它们灾难性前进的原因。我们指出了FMBP是如何形成的,将其专门用于稳定的平面流动,并推导了一个描述固体体积分数在层间分布的常微分方程。这个微分方程是二阶的,并产生一个奇异摄动解过程。这个问题可以在假定流体粘度是固体体积分数的单调函数的情况下进行分析。然而,在本文中,我们证明了通过选择恒定的流体粘度和消失的热力学压力,出现的固体体积分数在物理上是没有意义的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信