A new machine learning approach to select adaptive IMFs of EMD

Md. Burhan Uddin, J. Uddin, Razia Sultana, S. Islam
{"title":"A new machine learning approach to select adaptive IMFs of EMD","authors":"Md. Burhan Uddin, J. Uddin, Razia Sultana, S. Islam","doi":"10.1109/ICECTE.2016.7879617","DOIUrl":null,"url":null,"abstract":"An adaptive algorithm for selection of Intrinsic Mode Functions (IMF) of Empirical Mode Decomposition (EMD) is a time demand in the field of signal processing. This paper presents a new model of an effective algorithm for the adaptive selection of IMFs for the EMD. Our proposed model suggests the decomposition of an input signal using EMD, and the resultant IMFs are classified into two categories the relevant noise free IMFs and the irrelevant noise dominant IMFs using a trained Support Vector Machine (SVM). The Pearson Correlation Coefficient (PCC) is used for the supervised training of SVM. Noise dominant IMFs are then de-noised using the Savitzky-Golay filter. The signal is reconstructed using both noise free and de-noised IMFs. Our proposed model makes the selection process of IMFs adaptive and it achieves high Signal to Noise Ratio (SNR) while the Percentage of RMS Difference (PRD) and Max Error values are low. Experimental result attained up to 41.79% SNR value, PRD and Max Error value reduced to 0.814% and 0.081%, respectively compared to other models.","PeriodicalId":6578,"journal":{"name":"2016 2nd International Conference on Electrical, Computer & Telecommunication Engineering (ICECTE)","volume":"14 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 2nd International Conference on Electrical, Computer & Telecommunication Engineering (ICECTE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECTE.2016.7879617","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

An adaptive algorithm for selection of Intrinsic Mode Functions (IMF) of Empirical Mode Decomposition (EMD) is a time demand in the field of signal processing. This paper presents a new model of an effective algorithm for the adaptive selection of IMFs for the EMD. Our proposed model suggests the decomposition of an input signal using EMD, and the resultant IMFs are classified into two categories the relevant noise free IMFs and the irrelevant noise dominant IMFs using a trained Support Vector Machine (SVM). The Pearson Correlation Coefficient (PCC) is used for the supervised training of SVM. Noise dominant IMFs are then de-noised using the Savitzky-Golay filter. The signal is reconstructed using both noise free and de-noised IMFs. Our proposed model makes the selection process of IMFs adaptive and it achieves high Signal to Noise Ratio (SNR) while the Percentage of RMS Difference (PRD) and Max Error values are low. Experimental result attained up to 41.79% SNR value, PRD and Max Error value reduced to 0.814% and 0.081%, respectively compared to other models.
一种新的机器学习方法选择EMD的自适应imf
经验模态分解(EMD)中固有模态函数(IMF)的自适应选择算法是信号处理领域的一个时间需求。本文提出了一种有效的EMD自适应选取imf的新算法模型。我们提出的模型建议使用EMD对输入信号进行分解,并使用训练好的支持向量机(SVM)将所得的imf分为两类:相关的无噪声imf和无关的噪声主导imf。使用Pearson相关系数(PCC)对支持向量机进行监督训练。然后使用Savitzky-Golay滤波器对噪声占主导地位的imf进行降噪。利用无噪声和去噪的imf重构信号。我们提出的模型使IMFs的选择过程自适应,实现了高信噪比(SNR),而均方根差百分比(PRD)和最大误差值较低。与其他模型相比,实验结果信噪比达到41.79%,PRD和Max Error值分别降低到0.814%和0.081%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信