On properties of one functional used in software constructions for solving differential games

Pub Date : 2021-12-01 DOI:10.35634/vm210410
A. Chentsov
{"title":"On properties of one functional used in software constructions for solving differential games","authors":"A. Chentsov","doi":"10.35634/vm210410","DOIUrl":null,"url":null,"abstract":"Nonlinear differential game (DG) is investigated; relaxations of the game problem of guidance are investigated also. The variant of the program iterations method realized in the space of position functions and delivering in limit the value function of the minimax-maximin DG for special functionals of a trajectory is considered. For every game position, this limit function realizes the least size of the target set neighborhood for which, under proportional weakening of phase constraints, the player interested in a guidance yet guarantees its realization. Properties of above-mentioned functionals and limit function are investigated. In particular, sufficient conditions for realization of values of given function under fulfilment of finite iteration number are obtained.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35634/vm210410","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Nonlinear differential game (DG) is investigated; relaxations of the game problem of guidance are investigated also. The variant of the program iterations method realized in the space of position functions and delivering in limit the value function of the minimax-maximin DG for special functionals of a trajectory is considered. For every game position, this limit function realizes the least size of the target set neighborhood for which, under proportional weakening of phase constraints, the player interested in a guidance yet guarantees its realization. Properties of above-mentioned functionals and limit function are investigated. In particular, sufficient conditions for realization of values of given function under fulfilment of finite iteration number are obtained.
分享
查看原文
求解微分对策软件构造中一个泛函的性质
研究了非线性微分对策(DG);研究了导引博弈问题的松弛性。考虑了在位置函数空间中实现的程序迭代方法的变体,并在极限条件下给出了轨迹特殊泛函的极小极大DG的值函数。对于每一个博弈位置,该极限函数实现目标集邻域的最小大小,在相位约束成比例弱化的情况下,对引导感兴趣的玩家保证其实现。研究了上述泛函和极限函数的性质。特别地,得到了给定函数在有限迭代次数下值实现的充分条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信