Learning to Align Semantic Segmentation and 2.5D Maps for Geolocalization

Anil Armagan, Martin Hirzer, P. Roth, V. Lepetit
{"title":"Learning to Align Semantic Segmentation and 2.5D Maps for Geolocalization","authors":"Anil Armagan, Martin Hirzer, P. Roth, V. Lepetit","doi":"10.1109/CVPR.2017.488","DOIUrl":null,"url":null,"abstract":"We present an efficient method for geolocalization in urban environments starting from a coarse estimate of the location provided by a GPS and using a simple untextured 2.5D model of the surrounding buildings. Our key contribution is a novel efficient and robust method to optimize the pose: We train a Deep Network to predict the best direction to improve a pose estimate, given a semantic segmentation of the input image and a rendering of the buildings from this estimate. We then iteratively apply this CNN until converging to a good pose. This approach avoids the use of reference images of the surroundings, which are difficult to acquire and match, while 2.5D models are broadly available. We can therefore apply it to places unseen during training.","PeriodicalId":6631,"journal":{"name":"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"33 1","pages":"4590-4597"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2017.488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

Abstract

We present an efficient method for geolocalization in urban environments starting from a coarse estimate of the location provided by a GPS and using a simple untextured 2.5D model of the surrounding buildings. Our key contribution is a novel efficient and robust method to optimize the pose: We train a Deep Network to predict the best direction to improve a pose estimate, given a semantic segmentation of the input image and a rendering of the buildings from this estimate. We then iteratively apply this CNN until converging to a good pose. This approach avoids the use of reference images of the surroundings, which are difficult to acquire and match, while 2.5D models are broadly available. We can therefore apply it to places unseen during training.
学习对齐语义分割和2.5D地图用于地理定位
我们提出了一种在城市环境中进行地理定位的有效方法,从GPS提供的粗略位置估计开始,并使用周围建筑物的简单无纹理2.5D模型。我们的关键贡献是一种新的高效鲁棒的姿态优化方法:我们训练一个深度网络来预测最佳方向,以改进姿态估计,给定输入图像的语义分割和该估计的建筑物渲染。然后我们迭代地应用这个CNN,直到收敛到一个好的姿势。这种方法避免了使用难以获取和匹配的周围环境的参考图像,而2.5D模型则广泛可用。因此,我们可以将其应用于训练中看不到的地方。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信