A New Proof of Rational Cycles for Collatz-Like Functions Using a Coprime Condition

IF 0.7 Q2 MATHEMATICS
Benjamin Bairrington, Nabil Mohsen
{"title":"A New Proof of Rational Cycles for Collatz-Like Functions Using a Coprime Condition","authors":"Benjamin Bairrington, Nabil Mohsen","doi":"10.1155/2023/5159528","DOIUrl":null,"url":null,"abstract":"<jats:p>In this paper, we study the bounded trajectories of Collatz-like functions. Fix <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M1\">\n <mi>α</mi>\n <mo>,</mo>\n <mi>β</mi>\n <mo>∈</mo>\n <msub>\n <mrow>\n <mi mathvariant=\"double-struck\">Z</mi>\n </mrow>\n <mrow>\n <mo>></mo>\n <mn>0</mn>\n </mrow>\n </msub>\n </math>\n </jats:inline-formula> so that <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M2\">\n <mi>α</mi>\n </math>\n </jats:inline-formula> and <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M3\">\n <mi>β</mi>\n </math>\n </jats:inline-formula> are coprime. Let <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M4\">\n <mover accent=\"true\">\n <mi>k</mi>\n <mo>¯</mo>\n </mover>\n <mo>=</mo>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <msub>\n <mrow>\n <mi>k</mi>\n </mrow>\n <mrow>\n <mn>1</mn>\n </mrow>\n </msub>\n <mo>,</mo>\n <mo>…</mo>\n <mo>,</mo>\n <msub>\n <mrow>\n <mi>k</mi>\n </mrow>\n <mrow>\n <mi>β</mi>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msub>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula> so that for each <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M5\">\n <mn>1</mn>\n <mo>≤</mo>\n <mi>i</mi>\n <mo>≤</mo>\n <mi>β</mi>\n <mo>−</mo>\n <mn>1</mn>\n </math>\n </jats:inline-formula>, <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M6\">\n <msub>\n <mrow>\n <mi>k</mi>\n </mrow>\n <mrow>\n <mi>i</mi>\n </mrow>\n </msub>\n <mo>∈</mo>\n <msub>\n <mrow>\n <mi mathvariant=\"double-struck\">Z</mi>\n </mrow>\n <mrow>\n <mo>></mo>\n <mn>0</mn>\n </mrow>\n </msub>\n </math>\n </jats:inline-formula>, <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M7\">\n <msub>\n <mrow>\n <mi>k</mi>\n </mrow>\n <mrow>\n <mi>i</mi>\n </mrow>\n </msub>\n </math>\n </jats:inline-formula> is coprime to <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M8\">\n <mi>α</mi>\n </math>\n </jats:inline-formula> and <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M9\">\n <mi>β</mi>\n </math>\n </jats:inline-formula>, and <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M10\">\n <msub>\n <mrow>\n <mi>k</mi>\n </mrow>\n <mrow>\n <mi>i</mi>\n </mrow>\n </msub>\n <mo>≡</mo>\n <mi>i</mi>\n <mtext> </mtext>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi mathvariant=\"normal\">mod</mi>\n <mtext> </mtext>\n <mi>β</mi>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula>. We define the function <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M11\">\n <msub>\n <mrow>\n <mi>C</mi>\n </mrow>\n <mrow>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>α</mi>\n <mo>,</mo>\n <mi>β</mi>\n <mo>,</mo>\n <mover accent=\"true\">\n <mi>k</mi>\n <mo>¯</mo>\n </mover>\n </mrow>\n </mfenced>\n </mrow>\n </msub>\n <mo>:</mo>\n <msub>\n <mrow>\n <mi mathvariant=\"double-struck\">Z</mi>\n </mrow>\n <mrow>\n <mo>></mo>\n <mn>0</mn>\n </mrow>\n </msub>\n <mo>⟶</mo>\n <msub>\n <mrow>\n <mi mathvariant=\"double-struck\">Z</mi>\n </mrow>\n <mrow>\n <mo>></mo>\n <mn>0</mn>\n </mrow>\n </msub>\n </math>\n </jats:inline-formula> and the sequence <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M12\">\n <mfenced open=\"{\" close=\"}\" separators=\"|\">\n <mrow>\n <mi>n</mi>\n <mo>,</mo>\n <msub>\n <mrow>\n <mi>C</mi>\n </mrow>\n <mrow>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>α</mi>\n <mo>,</mo>\n <mi>β</mi>\n <mo>,</mo>\n <mover accent=\"true\">\n <mi>k</mi>\n <mo>¯</mo>\n </mover>\n </mrow>\n </mfenced>\n </mrow>\n </msub>\n <mrow>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>n</mi>\n </mrow>\n </mfenced>\n </mrow>\n <mo>,</mo>\n <msubsup>\n <mrow>\n <mi>C</mi>\n </mrow>\n <mrow>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>α</mi>\n <mo>,</mo>\n <mi>β</mi>\n <mo>,</mo>\n <mover accent=\"true\">\n <mi>k</mi>\n <mo>¯</mo>\n </mover>\n </mrow>\n </mfenced>\n </mrow>\n ","PeriodicalId":43667,"journal":{"name":"Muenster Journal of Mathematics","volume":"52 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Muenster Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/5159528","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study the bounded trajectories of Collatz-like functions. Fix α , β Z > 0 so that α and β are coprime. Let k ¯ = k 1 , , k β 1 so that for each 1 i β 1 , k i Z > 0 , k i is coprime to α and β , and k i i mod β . We define the function C α , β , k ¯ : Z > 0 Z > 0 and the sequence n , C α , β , k ¯ n , C α , β , k ¯
类collatz函数的一个新的用素数条件证明有理循环
我们定义函数C α, β,K¯:Z > 0序列n,C α, β,K¯n, c α, β,k ¯
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信