求助PDF
{"title":"A New Proof of Rational Cycles for Collatz-Like Functions Using a Coprime Condition","authors":"Benjamin Bairrington, Nabil Mohsen","doi":"10.1155/2023/5159528","DOIUrl":null,"url":null,"abstract":"<jats:p>In this paper, we study the bounded trajectories of Collatz-like functions. Fix <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M1\">\n <mi>α</mi>\n <mo>,</mo>\n <mi>β</mi>\n <mo>∈</mo>\n <msub>\n <mrow>\n <mi mathvariant=\"double-struck\">Z</mi>\n </mrow>\n <mrow>\n <mo>></mo>\n <mn>0</mn>\n </mrow>\n </msub>\n </math>\n </jats:inline-formula> so that <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M2\">\n <mi>α</mi>\n </math>\n </jats:inline-formula> and <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M3\">\n <mi>β</mi>\n </math>\n </jats:inline-formula> are coprime. Let <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M4\">\n <mover accent=\"true\">\n <mi>k</mi>\n <mo>¯</mo>\n </mover>\n <mo>=</mo>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <msub>\n <mrow>\n <mi>k</mi>\n </mrow>\n <mrow>\n <mn>1</mn>\n </mrow>\n </msub>\n <mo>,</mo>\n <mo>…</mo>\n <mo>,</mo>\n <msub>\n <mrow>\n <mi>k</mi>\n </mrow>\n <mrow>\n <mi>β</mi>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msub>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula> so that for each <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M5\">\n <mn>1</mn>\n <mo>≤</mo>\n <mi>i</mi>\n <mo>≤</mo>\n <mi>β</mi>\n <mo>−</mo>\n <mn>1</mn>\n </math>\n </jats:inline-formula>, <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M6\">\n <msub>\n <mrow>\n <mi>k</mi>\n </mrow>\n <mrow>\n <mi>i</mi>\n </mrow>\n </msub>\n <mo>∈</mo>\n <msub>\n <mrow>\n <mi mathvariant=\"double-struck\">Z</mi>\n </mrow>\n <mrow>\n <mo>></mo>\n <mn>0</mn>\n </mrow>\n </msub>\n </math>\n </jats:inline-formula>, <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M7\">\n <msub>\n <mrow>\n <mi>k</mi>\n </mrow>\n <mrow>\n <mi>i</mi>\n </mrow>\n </msub>\n </math>\n </jats:inline-formula> is coprime to <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M8\">\n <mi>α</mi>\n </math>\n </jats:inline-formula> and <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M9\">\n <mi>β</mi>\n </math>\n </jats:inline-formula>, and <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M10\">\n <msub>\n <mrow>\n <mi>k</mi>\n </mrow>\n <mrow>\n <mi>i</mi>\n </mrow>\n </msub>\n <mo>≡</mo>\n <mi>i</mi>\n <mtext> </mtext>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi mathvariant=\"normal\">mod</mi>\n <mtext> </mtext>\n <mi>β</mi>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula>. We define the function <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M11\">\n <msub>\n <mrow>\n <mi>C</mi>\n </mrow>\n <mrow>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>α</mi>\n <mo>,</mo>\n <mi>β</mi>\n <mo>,</mo>\n <mover accent=\"true\">\n <mi>k</mi>\n <mo>¯</mo>\n </mover>\n </mrow>\n </mfenced>\n </mrow>\n </msub>\n <mo>:</mo>\n <msub>\n <mrow>\n <mi mathvariant=\"double-struck\">Z</mi>\n </mrow>\n <mrow>\n <mo>></mo>\n <mn>0</mn>\n </mrow>\n </msub>\n <mo>⟶</mo>\n <msub>\n <mrow>\n <mi mathvariant=\"double-struck\">Z</mi>\n </mrow>\n <mrow>\n <mo>></mo>\n <mn>0</mn>\n </mrow>\n </msub>\n </math>\n </jats:inline-formula> and the sequence <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M12\">\n <mfenced open=\"{\" close=\"}\" separators=\"|\">\n <mrow>\n <mi>n</mi>\n <mo>,</mo>\n <msub>\n <mrow>\n <mi>C</mi>\n </mrow>\n <mrow>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>α</mi>\n <mo>,</mo>\n <mi>β</mi>\n <mo>,</mo>\n <mover accent=\"true\">\n <mi>k</mi>\n <mo>¯</mo>\n </mover>\n </mrow>\n </mfenced>\n </mrow>\n </msub>\n <mrow>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>n</mi>\n </mrow>\n </mfenced>\n </mrow>\n <mo>,</mo>\n <msubsup>\n <mrow>\n <mi>C</mi>\n </mrow>\n <mrow>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>α</mi>\n <mo>,</mo>\n <mi>β</mi>\n <mo>,</mo>\n <mover accent=\"true\">\n <mi>k</mi>\n <mo>¯</mo>\n </mover>\n </mrow>\n </mfenced>\n </mrow>\n ","PeriodicalId":43667,"journal":{"name":"Muenster Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Muenster Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/5159528","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用