A NOTE ON THE APPROXIMATION OF PDES WITH UNBOUNDED COEFFICIENTS -- THE SPECIAL ONE-DIMENSIONAL CASE

F. F. G. ccalves, M. Grossinho, Eduardo Souza de Morais
{"title":"A NOTE ON THE APPROXIMATION OF PDES WITH UNBOUNDED COEFFICIENTS -- THE SPECIAL ONE-DIMENSIONAL CASE","authors":"F. F. G. ccalves, M. Grossinho, Eduardo Souza de Morais","doi":"10.12732/IJAM.V33I1.11","DOIUrl":null,"url":null,"abstract":"Abstract: We consider the spatial approximation of the Cauchy problem for a linear uniformly parabolic PDE of second order, with nondivergent operator and unbounded timeand space-dependent coefficients, where equation’s free term and initial data are also allowed to grow. We concentrate on the special case where the PDE has one dimension in space. As in [10], we consider a suitable variational framework and approximate the PDE problem’s generalised solution in the spatial variable, with the use of finite-difference methods, but we obtain, for this case, consistency and convergence results sharper than the corresponding results obtained in [10] for the more general multidimensional case.","PeriodicalId":14365,"journal":{"name":"International journal of pure and applied mathematics","volume":"406 1","pages":"137"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of pure and applied mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12732/IJAM.V33I1.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract: We consider the spatial approximation of the Cauchy problem for a linear uniformly parabolic PDE of second order, with nondivergent operator and unbounded timeand space-dependent coefficients, where equation’s free term and initial data are also allowed to grow. We concentrate on the special case where the PDE has one dimension in space. As in [10], we consider a suitable variational framework and approximate the PDE problem’s generalised solution in the spatial variable, with the use of finite-difference methods, but we obtain, for this case, consistency and convergence results sharper than the corresponding results obtained in [10] for the more general multidimensional case.
关于系数无界偏微分方程近似的注记——一维的特殊情况
摘要考虑一类二阶线性均匀抛物型偏微分方程的空间逼近问题,该方程具有非发散算子和无界时空相关系数,其中方程的自由项和初始数据也允许增长。我们专注于PDE在空间中只有一维的特殊情况。正如在[10]中一样,我们考虑了一个合适的变分框架,并使用有限差分方法在空间变量中近似PDE问题的广义解,但在这种情况下,我们获得的一致性和收敛性结果比在[10]中获得的更一般的多维情况下的相应结果更清晰。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信