EFFECT OF DURATION OF THE BENTONITE ACID MODIFICATION ON THE ACTIVITY OF PD(II)-CU(II) CATALYTIC COMPOSITIONS IN THE REACTION OF CARBON MONOXIDE OXIDATION
{"title":"EFFECT OF DURATION OF THE BENTONITE ACID MODIFICATION ON THE ACTIVITY OF PD(II)-CU(II) CATALYTIC COMPOSITIONS IN THE REACTION OF CARBON MONOXIDE OXIDATION","authors":"G. Dzhyga","doi":"10.18524/2304-0947.2019.2(70).169238","DOIUrl":null,"url":null,"abstract":"The effect of duration of the bentonite acid modification on its physicochemical and structural parameters and also on the catalytic properties of bentonite anchored palladium-copper complexes in the reaction of low-temperature carbon monoxide oxidation with air oxygen has been studied. For all acid modified bentonite samples, 1H-Bent-τ (τ = 0.5, 1.0, 3.0, 4.0, and 6.0 h), some regularities of changes as compared with natural bentonite, N-Bent, in the bentonite phase composition and X-ray spectral parameters of montmorillonite that is a samples, regardless a contact time, τ, the montmorillonite crystalline structure does not change however its aluminosilicate layers constrict for both bentonite acid modified samples and Pd(II)-Cu(II)/1H-Bent-τ compositions. After acid treatment, the number and positions of IR bands characterizing structural groups Al-Al-OH, Al-Fe 3+ -OH, Si-O-Si, and Si-O-Al of Mont phase do not change however their intensities, except for Si-O-Si, decrease pointing to the loss of Al 3+ and Fe 3+ cations. Palladium-copper complexes can be anchored not only on Mont structural groups but also on surfaces of quarts, amorphous SiO 2 , and calcite if any. It has been found that the changes in physicochemical and structural parameters of the bentonite samples result in alterations in the catalytic activity of Pd(II)-Cu(II)/S— compositions (S— is N-Bent or 1H-Bent-τ) in the reaction of carbon monoxide oxidation with air oxygen. The composition based on 1Н-Бент-0.5 characterizing by the minimum pH value of its aqueous suspension shows the maximum catalytic activity: CO conversion is 78 %.","PeriodicalId":19451,"journal":{"name":"Odesa National University Herald. Chemistry","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Odesa National University Herald. Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18524/2304-0947.2019.2(70).169238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The effect of duration of the bentonite acid modification on its physicochemical and structural parameters and also on the catalytic properties of bentonite anchored palladium-copper complexes in the reaction of low-temperature carbon monoxide oxidation with air oxygen has been studied. For all acid modified bentonite samples, 1H-Bent-τ (τ = 0.5, 1.0, 3.0, 4.0, and 6.0 h), some regularities of changes as compared with natural bentonite, N-Bent, in the bentonite phase composition and X-ray spectral parameters of montmorillonite that is a samples, regardless a contact time, τ, the montmorillonite crystalline structure does not change however its aluminosilicate layers constrict for both bentonite acid modified samples and Pd(II)-Cu(II)/1H-Bent-τ compositions. After acid treatment, the number and positions of IR bands characterizing structural groups Al-Al-OH, Al-Fe 3+ -OH, Si-O-Si, and Si-O-Al of Mont phase do not change however their intensities, except for Si-O-Si, decrease pointing to the loss of Al 3+ and Fe 3+ cations. Palladium-copper complexes can be anchored not only on Mont structural groups but also on surfaces of quarts, amorphous SiO 2 , and calcite if any. It has been found that the changes in physicochemical and structural parameters of the bentonite samples result in alterations in the catalytic activity of Pd(II)-Cu(II)/S— compositions (S— is N-Bent or 1H-Bent-τ) in the reaction of carbon monoxide oxidation with air oxygen. The composition based on 1Н-Бент-0.5 characterizing by the minimum pH value of its aqueous suspension shows the maximum catalytic activity: CO conversion is 78 %.