Linear Maps Preserving Inverses of Tensor Products of Hermite Matrices

Q3 Mathematics
Shuang Yan, Yang Zhang
{"title":"Linear Maps Preserving Inverses of Tensor Products of Hermite Matrices","authors":"Shuang Yan, Yang Zhang","doi":"10.5539/jmr.v15n4p75","DOIUrl":null,"url":null,"abstract":"Let C be a complex field, H_{m_1m_2} be a linear space of tensor products of Hermite matrices H_{m_1}⊗H_{m_2} over C , and suppose m_{1}, m_2≥2 are positive integers. A linear map f :H_{m_1m_2} → H_n is called a linear inverse preserver if f( X_{1} ⊗X_{2} )^{-1}= f( X_{1}⊗X_{2}) ^{-1} ) for arbitrary invertible matrix X_{1} ⊗ X_{2}∈ H_{m_{1}m_{2}} .The aim of this paper is to characterize the linear maps preserving inverses of tensor products of Hermite matrices.","PeriodicalId":38619,"journal":{"name":"International Journal of Mathematics in Operational Research","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mathematics in Operational Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5539/jmr.v15n4p75","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Let C be a complex field, H_{m_1m_2} be a linear space of tensor products of Hermite matrices H_{m_1}⊗H_{m_2} over C , and suppose m_{1}, m_2≥2 are positive integers. A linear map f :H_{m_1m_2} → H_n is called a linear inverse preserver if f( X_{1} ⊗X_{2} )^{-1}= f( X_{1}⊗X_{2}) ^{-1} ) for arbitrary invertible matrix X_{1} ⊗ X_{2}∈ H_{m_{1}m_{2}} .The aim of this paper is to characterize the linear maps preserving inverses of tensor products of Hermite matrices.
保持Hermite矩阵张量积逆的线性映射
设C为复域,H_{m_1}⊗H_{m_2} / C的埃尔米特矩阵张量积的线性空间,设m_{1}, m_2≥2为正整数。如果对于任意可逆矩阵X_{1}⊗X_{2}) ^{-1}= f(X_{1}⊗X_{2}) ^{-1}),则线性映射f:H_{m_1m_2}→H_n称为线性逆保持器。本文的目的是刻画保持Hermite矩阵张量积逆的线性映射。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Mathematics in Operational Research
International Journal of Mathematics in Operational Research Decision Sciences-Decision Sciences (all)
CiteScore
2.10
自引率
0.00%
发文量
44
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信