Spatial quadratic variations for the solution to a stochastic partial differential equation with elliptic divergence form operator

IF 0.7 Q3 STATISTICS & PROBABILITY
M. Zili, Eya Zougar
{"title":"Spatial quadratic variations for the solution to a stochastic partial differential equation with elliptic divergence form operator","authors":"M. Zili, Eya Zougar","doi":"10.15559/19-VMSTA139","DOIUrl":null,"url":null,"abstract":"We introduce a stochastic partial differential equation (SPDE) with elliptic operator in divergence form, with measurable and bounded coefficients and driven by space-time white noise. Such SPDEs could be used in mathematical modelling of diffusion phenomena in medium consisting of different kinds of materials and undergoing stochastic perturbations. We characterize the solution and, using the Stein--Malliavin calculus, we prove that the sequence of its recentered and renormalized spatial quadratic variations satisfies an almost sure central limit theorem. Particular focus is given to the interesting case where the coefficients of the operator are piecewise constant.","PeriodicalId":42685,"journal":{"name":"Modern Stochastics-Theory and Applications","volume":"32 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2020-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Stochastics-Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15559/19-VMSTA139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 5

Abstract

We introduce a stochastic partial differential equation (SPDE) with elliptic operator in divergence form, with measurable and bounded coefficients and driven by space-time white noise. Such SPDEs could be used in mathematical modelling of diffusion phenomena in medium consisting of different kinds of materials and undergoing stochastic perturbations. We characterize the solution and, using the Stein--Malliavin calculus, we prove that the sequence of its recentered and renormalized spatial quadratic variations satisfies an almost sure central limit theorem. Particular focus is given to the interesting case where the coefficients of the operator are piecewise constant.
带椭圆散度算子的随机偏微分方程解的空间二次变分
引入一种随机偏微分方程(SPDE),该方程具有发散形式的椭圆算子,系数可测且有界,由时空白噪声驱动。该spde可用于模拟由不同材料组成的随机扰动介质中扩散现象的数学模型。我们对解进行了刻画,并利用Stein—Malliavin演算证明了它的重中心和重归一化的空间二次变分序列满足一个几乎确定的中心极限定理。特别的重点是给出了有趣的情况,其中算子的系数是分段常数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Modern Stochastics-Theory and Applications
Modern Stochastics-Theory and Applications STATISTICS & PROBABILITY-
CiteScore
1.30
自引率
50.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信