{"title":"Synthesis and characterization of novel poly(α-methyl β-alanine-b-lactone)s through hydrogen-transfer and ring-opening polymerization","authors":"E. Çatıker, Songül Kirlak, M. Atakay, B. Salih","doi":"10.2478/auoc-2022-0011","DOIUrl":null,"url":null,"abstract":"Abstract A series of novel poly(α-methyl β-alanine-b-lactone)s were prepared by a combination of hydrogen-transfer polymerization (HTP) of methacrylamide (MAm) and anionic ring-opening polymerization (AROP) of β-propiolactone (BPL), β-butyrolactone (BBL), and δ-valerolactone (DVL). For this purpose, poly(α-methyl β-alanine) (PmBA) having a living anionic end-group for a further extension was obtained via HTP of MAm. The anionic end-group on PmBA chains were used as initiation sites for AROP of BPL, BBL, and DVL. Fourier Transform Infrared Spectroscopy (FTIR) and Proton Nuclear Magnetic Resonance Spectroscopy (1H-NMR) confirmed the existence of both ester and α-methyl β-alanine (mBA) units in the final products. MALDI-MS analysis revealed that the poly(α-methyl β-alanine-b-lactone)s with average molar masses of several thousand g·mol−1 were obtained. DSC and TGA thermograms of each copolymer showed that the copolymers comprised the mBA and the corresponding ester units.","PeriodicalId":19641,"journal":{"name":"Ovidius University Annals of Chemistry","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ovidius University Annals of Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/auoc-2022-0011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract A series of novel poly(α-methyl β-alanine-b-lactone)s were prepared by a combination of hydrogen-transfer polymerization (HTP) of methacrylamide (MAm) and anionic ring-opening polymerization (AROP) of β-propiolactone (BPL), β-butyrolactone (BBL), and δ-valerolactone (DVL). For this purpose, poly(α-methyl β-alanine) (PmBA) having a living anionic end-group for a further extension was obtained via HTP of MAm. The anionic end-group on PmBA chains were used as initiation sites for AROP of BPL, BBL, and DVL. Fourier Transform Infrared Spectroscopy (FTIR) and Proton Nuclear Magnetic Resonance Spectroscopy (1H-NMR) confirmed the existence of both ester and α-methyl β-alanine (mBA) units in the final products. MALDI-MS analysis revealed that the poly(α-methyl β-alanine-b-lactone)s with average molar masses of several thousand g·mol−1 were obtained. DSC and TGA thermograms of each copolymer showed that the copolymers comprised the mBA and the corresponding ester units.