Experimentations and Analysis on Indoor Positioning through Fusion with Inertial Sensors and Dynamically Calibrated Wi-Fi FTM Ranging

Lu Wang, Xiaodong Cai, Liang Cheng, Ke Han, Hemin Han, Lili Ma
{"title":"Experimentations and Analysis on Indoor Positioning through Fusion with Inertial Sensors and Dynamically Calibrated Wi-Fi FTM Ranging","authors":"Lu Wang, Xiaodong Cai, Liang Cheng, Ke Han, Hemin Han, Lili Ma","doi":"10.1109/SENSORS47087.2021.9639872","DOIUrl":null,"url":null,"abstract":"By fusing the relative inertial sensory data and Wi-Fi Fine Time Measurement (FTM) ranging which can be utilized to calculate absolute position through Extended Kalman Filter (EKF) fusion framework with an extra dynamical Wi-Fi FTM ranging calibration mechanism, the indoor positioning performance was evaluated. The result shows that the positioning error reaches down to 1.5 m in some certain environmental configurations. Analytical findings were retrieved from experimental setups that resemble various typical indoor scenarios. It shows promising result utilizing the widely applied inertial sensory algorithm such as Pedestrian Dead Reckoning (PDR), together with the Wi-Fi FTM capable access points.","PeriodicalId":6775,"journal":{"name":"2021 IEEE Sensors","volume":"25 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Sensors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SENSORS47087.2021.9639872","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

By fusing the relative inertial sensory data and Wi-Fi Fine Time Measurement (FTM) ranging which can be utilized to calculate absolute position through Extended Kalman Filter (EKF) fusion framework with an extra dynamical Wi-Fi FTM ranging calibration mechanism, the indoor positioning performance was evaluated. The result shows that the positioning error reaches down to 1.5 m in some certain environmental configurations. Analytical findings were retrieved from experimental setups that resemble various typical indoor scenarios. It shows promising result utilizing the widely applied inertial sensory algorithm such as Pedestrian Dead Reckoning (PDR), together with the Wi-Fi FTM capable access points.
基于惯性传感器与动态校准Wi-Fi FTM测距融合的室内定位实验与分析
通过扩展卡尔曼滤波(EKF)融合框架,将相对惯性传感器数据与Wi-Fi精细时间测量(FTM)测距数据进行融合,并采用额外的动态Wi-Fi精细时间测量(FTM)测距标定机制,对室内定位性能进行评价。结果表明,在一定的环境配置下,定位误差可达1.5 m。分析结果是从类似于各种典型室内场景的实验设置中检索的。利用行人航位推算(PDR)等广泛应用的惯性传感算法,结合Wi-Fi FTM功能接入点,显示出令人满意的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信