Taking a Deeper Look at Co-Salient Object Detection

Deng-Ping Fan, Zheng Lin, Ge-Peng Ji, Dingwen Zhang, H. Fu, Ming-Ming Cheng
{"title":"Taking a Deeper Look at Co-Salient Object Detection","authors":"Deng-Ping Fan, Zheng Lin, Ge-Peng Ji, Dingwen Zhang, H. Fu, Ming-Ming Cheng","doi":"10.1109/cvpr42600.2020.00299","DOIUrl":null,"url":null,"abstract":"Co-salient object detection (CoSOD) is a newly emerging and rapidly growing branch of salient object detection (SOD), which aims to detect the co-occurring salient objects in multiple images. However, existing CoSOD datasets often have a serious data bias, which assumes that each group of images contains salient objects of similar visual appearances. This bias results in the ideal settings and the effectiveness of the models, trained on existing datasets, may be impaired in real-life situations, where the similarity is usually semantic or conceptual. To tackle this issue, we first collect a new high-quality dataset, named CoSOD3k, which contains 3,316 images divided into 160 groups with multiple level annotations, i.e., category, bounding box, object, and instance levels. CoSOD3k makes a significant leap in terms of diversity, difficulty and scalability, benefiting related vision tasks. Besides, we comprehensively summarize 34 cutting-edge algorithms, benchmarking 19 of them over four existing CoSOD datasets (MSRC, iCoSeg, Image Pair and CoSal2015) and our CoSOD3k with a total of ∼61K images (largest scale), and reporting group-level performance analysis. Finally, we discuss the challenge and future work of CoSOD. Our study would give a strong boost to growth in the CoSOD community. Benchmark toolbox and results are available on our project page.","PeriodicalId":6715,"journal":{"name":"2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"12 1","pages":"2916-2926"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"60","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/cvpr42600.2020.00299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 60

Abstract

Co-salient object detection (CoSOD) is a newly emerging and rapidly growing branch of salient object detection (SOD), which aims to detect the co-occurring salient objects in multiple images. However, existing CoSOD datasets often have a serious data bias, which assumes that each group of images contains salient objects of similar visual appearances. This bias results in the ideal settings and the effectiveness of the models, trained on existing datasets, may be impaired in real-life situations, where the similarity is usually semantic or conceptual. To tackle this issue, we first collect a new high-quality dataset, named CoSOD3k, which contains 3,316 images divided into 160 groups with multiple level annotations, i.e., category, bounding box, object, and instance levels. CoSOD3k makes a significant leap in terms of diversity, difficulty and scalability, benefiting related vision tasks. Besides, we comprehensively summarize 34 cutting-edge algorithms, benchmarking 19 of them over four existing CoSOD datasets (MSRC, iCoSeg, Image Pair and CoSal2015) and our CoSOD3k with a total of ∼61K images (largest scale), and reporting group-level performance analysis. Finally, we discuss the challenge and future work of CoSOD. Our study would give a strong boost to growth in the CoSOD community. Benchmark toolbox and results are available on our project page.
更深入地了解共显著目标检测
共同显著目标检测(CoSOD)是显著目标检测(SOD)中一个新兴且发展迅速的分支,其目的是检测多幅图像中共同出现的显著目标。然而,现有的CoSOD数据集通常存在严重的数据偏差,它假设每组图像都包含具有相似视觉外观的显著对象。这种偏差会导致理想设置和在现有数据集上训练的模型的有效性在现实生活中可能会受到损害,在现实生活中,相似性通常是语义或概念上的。为了解决这个问题,我们首先收集了一个新的高质量数据集,名为CoSOD3k,其中包含3316张图像,分为160组,具有多级注释,即类别,边界框,对象和实例级别。CoSOD3k在多样性、难度和可扩展性方面实现了重大飞跃,有利于相关的视觉任务。此外,我们全面总结了34种前沿算法,在四个现有的CoSOD数据集(MSRC, iCoSeg, Image Pair和CoSal2015)和CoSOD3k上对其中19种算法进行了基准测试,总共有61K图像(最大规模),并报告了组级性能分析。最后,我们讨论了CoSOD面临的挑战和未来的工作。我们的研究将有力地促进CoSOD社区的发展。基准工具箱和结果可在我们的项目页面上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信