A Method for Synthetic LiDAR Generation to Create Annotated Datasets for Autonomous Vehicles Perception

Jorge Beltrán, Irene Cortés, Alejandro Barrera, Jesús Urdiales, Carlos Guindel, F. García, A. D. L. Escalera
{"title":"A Method for Synthetic LiDAR Generation to Create Annotated Datasets for Autonomous Vehicles Perception","authors":"Jorge Beltrán, Irene Cortés, Alejandro Barrera, Jesús Urdiales, Carlos Guindel, F. García, A. D. L. Escalera","doi":"10.1109/ITSC.2019.8917176","DOIUrl":null,"url":null,"abstract":"LiDAR devices have become a key sensor for autonomous vehicles perception due to their ability to capture reliable geometry information. Indeed, approaches processing LiDAR data have shown an impressive accuracy for 3D object detection tasks, outperforming methods solely based on image inputs. However, the wide diversity of on-board sensor configurations makes the deployment of published algorithms into real platforms a hard task, due to the scarcity of annotated datasets containing laser scans. We present a method to generate new point clouds datasets as captured by a real LiDAR device. The proposed pipeline makes use of multiple frames to perform an accurate 3D reconstruction of the scene in the spherical coordinates system that enables the simulation of the sweeps of a virtual LiDAR sensor, configurable both in location and inner specifications. The similarity between real data and the generated synthetic clouds is assessed through a set of experiments performed using KITTI Depth and Object Benchmarks.","PeriodicalId":6717,"journal":{"name":"2019 IEEE Intelligent Transportation Systems Conference (ITSC)","volume":"239 1","pages":"1091-1096"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Intelligent Transportation Systems Conference (ITSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC.2019.8917176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

LiDAR devices have become a key sensor for autonomous vehicles perception due to their ability to capture reliable geometry information. Indeed, approaches processing LiDAR data have shown an impressive accuracy for 3D object detection tasks, outperforming methods solely based on image inputs. However, the wide diversity of on-board sensor configurations makes the deployment of published algorithms into real platforms a hard task, due to the scarcity of annotated datasets containing laser scans. We present a method to generate new point clouds datasets as captured by a real LiDAR device. The proposed pipeline makes use of multiple frames to perform an accurate 3D reconstruction of the scene in the spherical coordinates system that enables the simulation of the sweeps of a virtual LiDAR sensor, configurable both in location and inner specifications. The similarity between real data and the generated synthetic clouds is assessed through a set of experiments performed using KITTI Depth and Object Benchmarks.
一种合成激光雷达生成自动驾驶汽车感知注释数据集的方法
由于能够捕获可靠的几何信息,激光雷达设备已成为自动驾驶汽车感知的关键传感器。事实上,处理激光雷达数据的方法在3D目标检测任务中显示出令人印象深刻的准确性,优于仅基于图像输入的方法。然而,由于缺少包含激光扫描的带注释的数据集,机载传感器配置的多样性使得将发布的算法部署到实际平台上成为一项艰巨的任务。我们提出了一种生成由真实激光雷达设备捕获的新点云数据集的方法。拟议的管道利用多帧在球坐标系统中对场景进行精确的3D重建,从而可以模拟虚拟LiDAR传感器的扫描,可在位置和内部规格上进行配置。通过使用KITTI深度和对象基准进行的一组实验,评估了真实数据与生成的合成云之间的相似性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信