Investigation of the orbital stability of rectilinear motions of roller-racer on a vibrating plane

IF 0.6 Q3 MATHEMATICS
E. Artemova, A. Kilin, Yu.V. Korobeinikova
{"title":"Investigation of the orbital stability of rectilinear motions of roller-racer on a vibrating plane","authors":"E. Artemova, A. Kilin, Yu.V. Korobeinikova","doi":"10.35634/vm220408","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of a roller-racer rolling on an oscillating plane. Equations of motion of the roller-racer in the form of a system of four nonautonomous differential equations are obtained. Two families of particular solutions are found which correspond to rectilinear motions of the roller-racer along and perpendicular to the plane's oscillations. Numerical estimates are given for the multipliers of solutions corresponding to the motion of the robot along the oscillations. Also, a special case is presented in which it is possible to obtain analytic expressions of the multipliers. In this case, it is shown that the motion along oscillations of a “folded” roller-racer is linearly orbitally stable as it moves with its joint ahead, and that all other motions are unstable. It is shown that, in a linear approximation, the family corresponding to the motion of the robot is perpendicular to the plane's oscillations, that is, it is unstable.","PeriodicalId":43239,"journal":{"name":"Vestnik Udmurtskogo Universiteta-Matematika Mekhanika Kompyuternye Nauki","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vestnik Udmurtskogo Universiteta-Matematika Mekhanika Kompyuternye Nauki","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35634/vm220408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper addresses the problem of a roller-racer rolling on an oscillating plane. Equations of motion of the roller-racer in the form of a system of four nonautonomous differential equations are obtained. Two families of particular solutions are found which correspond to rectilinear motions of the roller-racer along and perpendicular to the plane's oscillations. Numerical estimates are given for the multipliers of solutions corresponding to the motion of the robot along the oscillations. Also, a special case is presented in which it is possible to obtain analytic expressions of the multipliers. In this case, it is shown that the motion along oscillations of a “folded” roller-racer is linearly orbitally stable as it moves with its joint ahead, and that all other motions are unstable. It is shown that, in a linear approximation, the family corresponding to the motion of the robot is perpendicular to the plane's oscillations, that is, it is unstable.
滚轮赛车在振动平面上直线运动的轨道稳定性研究
本文研究了滚轮在振动平面上的滚动问题。得到了滚轮赛车的运动方程,其形式为四个非自治微分方程组。找到了两类特解,它们对应于滚轮沿和垂直于平面振动的直线运动。给出了机器人沿振动方向运动的乘子解的数值估计。此外,还提出了一种特殊情况,在这种情况下,可以得到乘数的解析表达式。在这种情况下,它显示了一个“折叠的”滚轮赛车沿振荡运动是线性轨道稳定的,因为它的关节向前移动,而所有其他运动都是不稳定的。结果表明,在线性近似下,机器人运动所对应的族垂直于平面振荡,即不稳定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
40.00%
发文量
27
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信