Data-based design of multi-model inferential sensors

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Martin Mojto , Karol Ľubušký , Miroslav Fikar , Radoslav Paulen
{"title":"Data-based design of multi-model inferential sensors","authors":"Martin Mojto ,&nbsp;Karol Ľubušký ,&nbsp;Miroslav Fikar ,&nbsp;Radoslav Paulen","doi":"10.1016/j.compchemeng.2023.108379","DOIUrl":null,"url":null,"abstract":"<div><p>This paper deals with the problem of inferential (soft) sensor design. The nonlinear character of industrial processes is usually the main limitation to designing simple linear inferential sensors<span> with sufficient accuracy. In order to increase the inferential sensor predictive performance and yet to maintain its linear structure, multi-model inferential sensors represent a straightforward option. In this contribution, we propose two novel approaches for the design of multi-model inferential sensors aiming to mitigate some drawbacks of the state-of-the-art approaches. For a demonstration of the developed techniques, we design inferential sensors for a Vacuum Gasoil Hydrogenation unit, which is a real-world petrochemical refinery unit. The performance of the multi-model inferential sensor is compared against various single-model inferential sensors and the current (referential) inferential sensor used in the refinery. The results show substantial improvements over the state-of-the-art design techniques for single-/multi-model inferential sensors.</span></p></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"178 ","pages":"Article 108379"},"PeriodicalIF":3.9000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135423002491","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper deals with the problem of inferential (soft) sensor design. The nonlinear character of industrial processes is usually the main limitation to designing simple linear inferential sensors with sufficient accuracy. In order to increase the inferential sensor predictive performance and yet to maintain its linear structure, multi-model inferential sensors represent a straightforward option. In this contribution, we propose two novel approaches for the design of multi-model inferential sensors aiming to mitigate some drawbacks of the state-of-the-art approaches. For a demonstration of the developed techniques, we design inferential sensors for a Vacuum Gasoil Hydrogenation unit, which is a real-world petrochemical refinery unit. The performance of the multi-model inferential sensor is compared against various single-model inferential sensors and the current (referential) inferential sensor used in the refinery. The results show substantial improvements over the state-of-the-art design techniques for single-/multi-model inferential sensors.

Abstract Image

基于数据的多模型推理传感器设计
本文讨论了推理(软)传感器的设计问题。工业过程的非线性特性通常是设计具有足够精度的简单线性推理传感器的主要限制。为了提高推理传感器的预测性能,同时保持其线性结构,多模型推理传感器是一种直接的选择。在这篇文章中,我们提出了两种设计多模型推理传感器的新方法,旨在减轻最先进方法的一些缺点。为了演示开发的技术,我们设计了用于真空汽油加氢装置的推理传感器,这是一个真实的石化炼油厂装置。将多模型推理传感器的性能与炼油厂使用的各种单模型推理传感器和电流(参考)推理传感器进行了比较。结果表明,相对于单/多模型推理传感器的最新设计技术,该方法有了实质性的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信