Computer-aided diagnostic tool for early detection of prostate cancer

Islam Reda, A. Shalaby, F. Khalifa, M. Elmogy, A. Aboulfotouh, M. El-Ghar, Ehsan Hosseini-Asl, N. Werghi, R. Keynton, A. El-Baz
{"title":"Computer-aided diagnostic tool for early detection of prostate cancer","authors":"Islam Reda, A. Shalaby, F. Khalifa, M. Elmogy, A. Aboulfotouh, M. El-Ghar, Ehsan Hosseini-Asl, N. Werghi, R. Keynton, A. El-Baz","doi":"10.1109/ICIP.2016.7532843","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel non-invasive framework for the early diagnosis of prostate cancer from diffusion-weighted magnetic resonance imaging (DW-MRI). The proposed approach consists of three main steps. In the first step, the prostate is localized and segmented based on a new level-set model. In the second step, the apparent diffusion coefficient (ADC) of the segmented prostate volume is mathematically calculated for different b-values. To preserve continuity, the calculated ADC values are normalized and refined using a Generalized Gauss-Markov Random Field (GGMRF) image model. The cumulative distribution function (CDF) of refined ADC for the prostate tissues at different b-values are then constructed. These CDFs are considered as global features describing water diffusion which can be used to distinguish between benign and malignant tumors. Finally, a deep learning auto-encoder network, trained by a stacked non-negativity constraint algorithm (SNCAE), is used to classify the prostate tumor as benign or malignant based on the CDFs extracted from the previous step. Preliminary experiments on 53 clinical DW-MRI data sets resulted in 100% correct classification, indicating the high accuracy of the proposed framework and holding promise of the proposed CAD system as a reliable non-invasive diagnostic tool.","PeriodicalId":6521,"journal":{"name":"2016 IEEE International Conference on Image Processing (ICIP)","volume":"8 1","pages":"2668-2672"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2016.7532843","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

In this paper, we propose a novel non-invasive framework for the early diagnosis of prostate cancer from diffusion-weighted magnetic resonance imaging (DW-MRI). The proposed approach consists of three main steps. In the first step, the prostate is localized and segmented based on a new level-set model. In the second step, the apparent diffusion coefficient (ADC) of the segmented prostate volume is mathematically calculated for different b-values. To preserve continuity, the calculated ADC values are normalized and refined using a Generalized Gauss-Markov Random Field (GGMRF) image model. The cumulative distribution function (CDF) of refined ADC for the prostate tissues at different b-values are then constructed. These CDFs are considered as global features describing water diffusion which can be used to distinguish between benign and malignant tumors. Finally, a deep learning auto-encoder network, trained by a stacked non-negativity constraint algorithm (SNCAE), is used to classify the prostate tumor as benign or malignant based on the CDFs extracted from the previous step. Preliminary experiments on 53 clinical DW-MRI data sets resulted in 100% correct classification, indicating the high accuracy of the proposed framework and holding promise of the proposed CAD system as a reliable non-invasive diagnostic tool.
早期发现前列腺癌的计算机辅助诊断工具
在本文中,我们提出了一种新的无创框架,用于扩散加权磁共振成像(DW-MRI)早期诊断前列腺癌。建议的方法包括三个主要步骤。第一步,基于新的水平集模型对前列腺进行定位和分割。第二步,对不同的b值,用数学方法计算分割后前列腺体积的表观扩散系数(ADC)。为了保持连续性,计算出的ADC值使用广义高斯-马尔科夫随机场(GGMRF)图像模型进行归一化和细化。然后构造不同b值下前列腺组织精细ADC的累积分布函数(CDF)。这些CDFs被认为是描述水扩散的全局特征,可以用来区分良性和恶性肿瘤。最后,使用堆叠非负性约束算法(堆叠非负性约束算法,SNCAE)训练的深度学习自编码器网络,根据前一步提取的CDFs对前列腺肿瘤进行良性或恶性分类。在53个临床DW-MRI数据集上进行的初步实验结果显示,分类准确率为100%,表明所提出的框架具有很高的准确性,并且所提出的CAD系统有望成为可靠的无创诊断工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信