{"title":"Some bounds for the $\\mathbb{A}$-numerical radius of certain $2 \\times 2$ operator matrices","authors":"Kais Feki","doi":"10.15672/HUJMS.730574","DOIUrl":null,"url":null,"abstract":"For a given bounded positive (semidefinite) linear operator $A$ on a complex Hilbert space $\\big(\\mathcal{H}, \\langle \\cdot\\mid \\cdot\\rangle \\big)$, we consider the semi-Hilbertian space $\\big(\\mathcal{H}, \\langle \\cdot\\mid \\cdot\\rangle_A \\big)$ where ${\\langle x\\mid y\\rangle}_A := \\langle Ax\\mid y\\rangle$ for every $x, y\\in\\mathcal{H}$. The $A$-numerical radius of an $A$-bounded operator $T$ on $\\mathcal{H}$ is given by \\begin{align*} \\omega_A(T) = \\sup\\Big\\{\\big|{\\langle Tx\\mid x\\rangle}_A\\big|\\,; \\,\\,x\\in \\mathcal{H}, \\,{\\langle x\\mid x\\rangle}_A= 1\\Big\\}. \\end{align*} Our aim in this paper is to derive several $\\mathbb{A}$-numerical radius inequalities for $2\\times 2$ operator matrices whose entries are $A$-bounded operators, where $\\mathbb{A}=\\text{diag}(A,A)$.","PeriodicalId":8426,"journal":{"name":"arXiv: Functional Analysis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Functional Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15672/HUJMS.730574","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
For a given bounded positive (semidefinite) linear operator $A$ on a complex Hilbert space $\big(\mathcal{H}, \langle \cdot\mid \cdot\rangle \big)$, we consider the semi-Hilbertian space $\big(\mathcal{H}, \langle \cdot\mid \cdot\rangle_A \big)$ where ${\langle x\mid y\rangle}_A := \langle Ax\mid y\rangle$ for every $x, y\in\mathcal{H}$. The $A$-numerical radius of an $A$-bounded operator $T$ on $\mathcal{H}$ is given by \begin{align*} \omega_A(T) = \sup\Big\{\big|{\langle Tx\mid x\rangle}_A\big|\,; \,\,x\in \mathcal{H}, \,{\langle x\mid x\rangle}_A= 1\Big\}. \end{align*} Our aim in this paper is to derive several $\mathbb{A}$-numerical radius inequalities for $2\times 2$ operator matrices whose entries are $A$-bounded operators, where $\mathbb{A}=\text{diag}(A,A)$.