Collaborative Optimization and Aggregation for Decentralized Domain Generalization and Adaptation

Guile Wu, S. Gong
{"title":"Collaborative Optimization and Aggregation for Decentralized Domain Generalization and Adaptation","authors":"Guile Wu, S. Gong","doi":"10.1109/ICCV48922.2021.00642","DOIUrl":null,"url":null,"abstract":"Contemporary domain generalization (DG) and multisource unsupervised domain adaptation (UDA) methods mostly collect data from multiple domains together for joint optimization. However, this centralized training paradigm poses a threat to data privacy and is not applicable when data are non-shared across domains. In this work, we propose a new approach called Collaborative Optimization and Aggregation (COPA), which aims at optimizing a generalized target model for decentralized DG and UDA, where data from different domains are non-shared and private. Our base model consists of a domain-invariant feature extractor and an ensemble of domain-specific classifiers. In an iterative learning process, we optimize a local model for each domain, and then centrally aggregate local feature extractors and assemble domain-specific classifiers to construct a generalized global model, without sharing data from different domains. To improve generalization of feature extractors, we employ hybrid batch-instance normalization and collaboration of frozen classifiers. For better decentralized UDA, we further introduce a prediction agreement mechanism to overcome local disparities towards central model aggregation. Extensive experiments on five DG and UDA benchmark datasets show that COPA is capable of achieving comparable performance against the state-of-the-art DG and UDA methods without the need for centralized data collection in model training.","PeriodicalId":6820,"journal":{"name":"2021 IEEE/CVF International Conference on Computer Vision (ICCV)","volume":"30 1","pages":"6464-6473"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/CVF International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV48922.2021.00642","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

Abstract

Contemporary domain generalization (DG) and multisource unsupervised domain adaptation (UDA) methods mostly collect data from multiple domains together for joint optimization. However, this centralized training paradigm poses a threat to data privacy and is not applicable when data are non-shared across domains. In this work, we propose a new approach called Collaborative Optimization and Aggregation (COPA), which aims at optimizing a generalized target model for decentralized DG and UDA, where data from different domains are non-shared and private. Our base model consists of a domain-invariant feature extractor and an ensemble of domain-specific classifiers. In an iterative learning process, we optimize a local model for each domain, and then centrally aggregate local feature extractors and assemble domain-specific classifiers to construct a generalized global model, without sharing data from different domains. To improve generalization of feature extractors, we employ hybrid batch-instance normalization and collaboration of frozen classifiers. For better decentralized UDA, we further introduce a prediction agreement mechanism to overcome local disparities towards central model aggregation. Extensive experiments on five DG and UDA benchmark datasets show that COPA is capable of achieving comparable performance against the state-of-the-art DG and UDA methods without the need for centralized data collection in model training.
分散领域泛化与自适应的协同优化与聚合
现有的域泛化(DG)和多源无监督域自适应(UDA)方法多是将多个域的数据集合在一起进行联合优化。然而,这种集中式训练范式对数据隐私构成了威胁,并且不适用于数据跨域非共享的情况。在这项工作中,我们提出了一种称为协同优化和聚合(COPA)的新方法,旨在优化分散DG和UDA的广义目标模型,其中来自不同领域的数据是非共享和私有的。我们的基本模型由一个领域不变的特征提取器和一个领域特定分类器的集合组成。在迭代学习过程中,我们为每个领域优化一个局部模型,然后集中聚集局部特征提取器和组装特定于领域的分类器来构建一个广义的全局模型,而不共享来自不同领域的数据。为了提高特征提取器的泛化,我们采用了混合批处理实例规范化和冻结分类器的协作。为了更好地实现去中心化UDA,我们进一步引入了一种预测协议机制,以克服向中心模型聚集的局部差异。在五个DG和UDA基准数据集上进行的大量实验表明,COPA能够实现与最先进的DG和UDA方法相当的性能,而无需在模型训练中集中收集数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信