Thompson's group F is 1-counter graph automatic

IF 0.1 Q4 MATHEMATICS
M. Elder, J. Taback
{"title":"Thompson's group F is 1-counter graph automatic","authors":"M. Elder, J. Taback","doi":"10.1515/gcc-2016-0001","DOIUrl":null,"url":null,"abstract":"Abstract It is not known whether Thompson's group F is automatic. With the recent extensions of the notion of an automatic group to graph automatic by Kharlampovich, Khoussainov and Miasnikov and then to 𝒞-graph automatic by the authors, a compelling question is whether F is graph automatic or 𝒞-graph automatic for an appropriate language class 𝒞. The extended definitions allow the use of a symbol alphabet for the normal form language, replacing the dependence on generating set. In this paper we construct a 1-counter graph automatic structure for F based on the standard infinite normal form for group elements.","PeriodicalId":41862,"journal":{"name":"Groups Complexity Cryptology","volume":"113 1","pages":"21 - 33"},"PeriodicalIF":0.1000,"publicationDate":"2015-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Groups Complexity Cryptology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/gcc-2016-0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 7

Abstract

Abstract It is not known whether Thompson's group F is automatic. With the recent extensions of the notion of an automatic group to graph automatic by Kharlampovich, Khoussainov and Miasnikov and then to 𝒞-graph automatic by the authors, a compelling question is whether F is graph automatic or 𝒞-graph automatic for an appropriate language class 𝒞. The extended definitions allow the use of a symbol alphabet for the normal form language, replacing the dependence on generating set. In this paper we construct a 1-counter graph automatic structure for F based on the standard infinite normal form for group elements.
汤普森的F组是1计数器自动图
Thompson的F群是否为自动的尚不清楚。随着最近由Kharlampovich, Khoussainov和Miasnikov将自动群的概念扩展到图形自动,然后由作者扩展到𝒞-graph自动,一个引人注目的问题是,对于适当的语言类来说,F是图形自动的还是𝒞-graph自动的?扩展的定义允许对范式语言使用符号字母表,取代对生成集的依赖。本文基于群元的标准无限范式,构造了F的1-计数器图自动结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信