Sven Amann, Sarah Nadi, H. Nguyen, T. Nguyen, M. Mezini
{"title":"MUBench: A Benchmark for API-Misuse Detectors","authors":"Sven Amann, Sarah Nadi, H. Nguyen, T. Nguyen, M. Mezini","doi":"10.1145/2901739.2903506","DOIUrl":null,"url":null,"abstract":"Over the last few years, researchers proposed a multitude of automated bug-detection approaches that mine a class of bugs that we call API misuses. Evaluations on a variety of software products show both the omnipresence of such misuses and the ability of the approaches to detect them. This work presents MuBench, a dataset of 89 API misuses that we collected from 33 real-world projects and a survey. With the dataset we empirically analyze the prevalence of API misuses compared to other types of bugs, finding that they are rare, but almost always cause crashes. Furthermore, we discuss how to use it to benchmark and compare API-misuse detectors.","PeriodicalId":6621,"journal":{"name":"2016 IEEE/ACM 13th Working Conference on Mining Software Repositories (MSR)","volume":"8 1","pages":"464-467"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"78","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/ACM 13th Working Conference on Mining Software Repositories (MSR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2901739.2903506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 78
Abstract
Over the last few years, researchers proposed a multitude of automated bug-detection approaches that mine a class of bugs that we call API misuses. Evaluations on a variety of software products show both the omnipresence of such misuses and the ability of the approaches to detect them. This work presents MuBench, a dataset of 89 API misuses that we collected from 33 real-world projects and a survey. With the dataset we empirically analyze the prevalence of API misuses compared to other types of bugs, finding that they are rare, but almost always cause crashes. Furthermore, we discuss how to use it to benchmark and compare API-misuse detectors.