M. E. Aryaee Panah, L. Ottaviano, E. Semenova, A. Lavrinenko
{"title":"Surface plasmons on highly doped InP","authors":"M. E. Aryaee Panah, L. Ottaviano, E. Semenova, A. Lavrinenko","doi":"10.1109/METAMATERIALS.2016.7746376","DOIUrl":null,"url":null,"abstract":"Silicon doped InP is grown by metal-organic vapor phase epitaxy (MOVPE) using optimized growth parameters to achieve high free carrier concentration. Reflectance of the grown sample in mid-IR range is measured using FTIR and the result is used to retrieve the parameters of the dielectric function. The derived dielectric function is used to simulate the excitation of surface plasmons by a diffraction grating made of the grown material. The grating structure is fabricated using standard nanofabrication techniques. Spectral features from the grating agree well with the simulations and show spp coupling at predicted angles of incidence and wavelengths.","PeriodicalId":6587,"journal":{"name":"2016 10th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (METAMATERIALS)","volume":"28 1","pages":"28-30"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 10th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (METAMATERIALS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/METAMATERIALS.2016.7746376","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Silicon doped InP is grown by metal-organic vapor phase epitaxy (MOVPE) using optimized growth parameters to achieve high free carrier concentration. Reflectance of the grown sample in mid-IR range is measured using FTIR and the result is used to retrieve the parameters of the dielectric function. The derived dielectric function is used to simulate the excitation of surface plasmons by a diffraction grating made of the grown material. The grating structure is fabricated using standard nanofabrication techniques. Spectral features from the grating agree well with the simulations and show spp coupling at predicted angles of incidence and wavelengths.