Density Functional Theory (DFT) Study on α,α-Bis(2-benzothiophen-1-yl)-4H-cyclopenta[2,1-b,3;4-b′]dithiophene Derivatives for Optoelectronic Devices

B. Semire, O. A. Odunola
{"title":"Density Functional Theory (DFT) Study on α,α-Bis(2-benzothiophen-1-yl)-4H-cyclopenta[2,1-b,3;4-b′]dithiophene Derivatives for Optoelectronic Devices","authors":"B. Semire, O. A. Odunola","doi":"10.21776/ub.jpacr.2019.008.02.438","DOIUrl":null,"url":null,"abstract":"Bis(2-benzothiophen-1-yl)-4H-cyclopenta[2,1-b,3;4-b′]dithiophene derivatives comprised of three series; bis(2-thienyl)-4H-cyclopenta[2,1-b,3;4-b]dithiopene (BTDT), diphenyl4Hcyclopenta[2,1-b,3;4-b]dithiophene (DPDT) and bis(2-benzothiophen-1-yl)-4Hcyclopenta[2,1-b,3;4-b]dithiophene (BBDT) have been studied using Density Functional Theory (B3LYP/6-31G**). In each series, molecules with C=S bridge exhibited the lowest band gap; for instance in BBDT series, the energy band gap could be arranged as 2.29, 2.23 and 1.66 eV for CH2, C=O and C=S bridge respectively. The low band gaps calculated for BBDT-C=S (1.66 eV) and BTDT-C=S (1.82 eV) could facilitate photo-excited electron transfer as one the criteria for a molecule to be used in photovoltaic devices. Also, the results showed that longest UV-vis absorption wavelength was observed for molecules with C=S bridge, i.e. 1013.66, 874.75 and 1097.66 nm for BTDT, DPDT and BBDT respectively. The polarizability (α0) valves calculated for the molecules follow as -CH2 < C=O < C=S bridge in each series, indicating that the higher the polarizability (α0) valve the longer the λmax nm and the lower the energy band gap. The magnitude of the molecular hyperpolarizability β0 showed that molecular structures with -C=O bridge could be best NLO material in each series.","PeriodicalId":22728,"journal":{"name":"The Journal of Pure and Applied Chemistry Research","volume":"50 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Pure and Applied Chemistry Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21776/ub.jpacr.2019.008.02.438","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Bis(2-benzothiophen-1-yl)-4H-cyclopenta[2,1-b,3;4-b′]dithiophene derivatives comprised of three series; bis(2-thienyl)-4H-cyclopenta[2,1-b,3;4-b]dithiopene (BTDT), diphenyl4Hcyclopenta[2,1-b,3;4-b]dithiophene (DPDT) and bis(2-benzothiophen-1-yl)-4Hcyclopenta[2,1-b,3;4-b]dithiophene (BBDT) have been studied using Density Functional Theory (B3LYP/6-31G**). In each series, molecules with C=S bridge exhibited the lowest band gap; for instance in BBDT series, the energy band gap could be arranged as 2.29, 2.23 and 1.66 eV for CH2, C=O and C=S bridge respectively. The low band gaps calculated for BBDT-C=S (1.66 eV) and BTDT-C=S (1.82 eV) could facilitate photo-excited electron transfer as one the criteria for a molecule to be used in photovoltaic devices. Also, the results showed that longest UV-vis absorption wavelength was observed for molecules with C=S bridge, i.e. 1013.66, 874.75 and 1097.66 nm for BTDT, DPDT and BBDT respectively. The polarizability (α0) valves calculated for the molecules follow as -CH2 < C=O < C=S bridge in each series, indicating that the higher the polarizability (α0) valve the longer the λmax nm and the lower the energy band gap. The magnitude of the molecular hyperpolarizability β0 showed that molecular structures with -C=O bridge could be best NLO material in each series.
光电子器件用α,α-双(2-苯并噻吩-1-基)- 4h -环五[2,1-b,3;4-b ']二噻吩衍生物的密度泛函理论研究
双(2-苯并噻吩-1-基)- 4h -环五[2,1-b,3;4-b ']二噻吩衍生物;利用密度泛函理论(B3LYP/6-31G**)研究了双(2-噻吩基)- 4h -环五[2,1-b, 3,4 -b]二噻吩(BTDT)、二苯基4h -环五[2,1-b, 3,4 -b]二噻吩(DPDT)和双(2-苯并噻吩-1-基)- 4h -环五[2,1-b, 3,4 -b]二噻吩(BBDT)。在各系列中,具有C=S桥的分子带隙最小;例如在BBDT系列中,CH2、C=O和C=S电桥的能带隙分别为2.29、2.23和1.66 eV。BTDT-C=S (1.66 eV)和BTDT-C=S (1.82 eV)计算的低带隙可以促进光激发电子转移,作为光电器件中使用分子的标准之一。同时,C=S桥分子的紫外可见吸收波长最长,分别为1013.66 nm、874.75 nm和1097.66 nm。各系列分子的极化率α0值依次为-CH2 < C=O < C=S桥,表明极化率α0值越高,λmax nm越长,能带隙越小。分子超极化率β0的大小表明,具有-C=O桥的分子结构是各系列中最佳的NLO材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信