Zero-Shot Action Recognition with Error-Correcting Output Codes

Jie Qin, Li Liu, Ling Shao, Fumin Shen, Bingbing Ni, Jiaxin Chen, Yunhong Wang
{"title":"Zero-Shot Action Recognition with Error-Correcting Output Codes","authors":"Jie Qin, Li Liu, Ling Shao, Fumin Shen, Bingbing Ni, Jiaxin Chen, Yunhong Wang","doi":"10.1109/CVPR.2017.117","DOIUrl":null,"url":null,"abstract":"Recently, zero-shot action recognition (ZSAR) has emerged with the explosive growth of action categories. In this paper, we explore ZSAR from a novel perspective by adopting the Error-Correcting Output Codes (dubbed ZSECOC). Our ZSECOC equips the conventional ECOC with the additional capability of ZSAR, by addressing the domain shift problem. In particular, we learn discriminative ZSECOC for seen categories from both category-level semantics and intrinsic data structures. This procedure deals with domain shift implicitly by transferring the well-established correlations among seen categories to unseen ones. Moreover, a simple semantic transfer strategy is developed for explicitly transforming the learned embeddings of seen categories to better fit the underlying structure of unseen categories. As a consequence, our ZSECOC inherits the promising characteristics from ECOC as well as overcomes domain shift, making it more discriminative for ZSAR. We systematically evaluate ZSECOC on three realistic action benchmarks, i.e. Olympic Sports, HMDB51 and UCF101. The experimental results clearly show the superiority of ZSECOC over the state-of-the-art methods.","PeriodicalId":6631,"journal":{"name":"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"94 1","pages":"1042-1051"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"136","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2017.117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 136

Abstract

Recently, zero-shot action recognition (ZSAR) has emerged with the explosive growth of action categories. In this paper, we explore ZSAR from a novel perspective by adopting the Error-Correcting Output Codes (dubbed ZSECOC). Our ZSECOC equips the conventional ECOC with the additional capability of ZSAR, by addressing the domain shift problem. In particular, we learn discriminative ZSECOC for seen categories from both category-level semantics and intrinsic data structures. This procedure deals with domain shift implicitly by transferring the well-established correlations among seen categories to unseen ones. Moreover, a simple semantic transfer strategy is developed for explicitly transforming the learned embeddings of seen categories to better fit the underlying structure of unseen categories. As a consequence, our ZSECOC inherits the promising characteristics from ECOC as well as overcomes domain shift, making it more discriminative for ZSAR. We systematically evaluate ZSECOC on three realistic action benchmarks, i.e. Olympic Sports, HMDB51 and UCF101. The experimental results clearly show the superiority of ZSECOC over the state-of-the-art methods.
带有纠错输出码的零射击动作识别
近年来,随着动作类别的爆发式增长,零射击动作识别(zero-shot action recognition, ZSAR)应运而生。本文采用纠错输出码(Error-Correcting Output Codes,简称ZSECOC),从一个全新的角度对ZSAR进行了研究。我们的ZSECOC通过解决域漂移问题,为传统的ECOC提供了ZSAR的额外能力。特别是,我们从类别级语义和内在数据结构两方面学习了已见类别的判别性ZSECOC。该过程通过将已建立的可见类别之间的相关性转移到未见类别之间,隐式地处理域移位。此外,开发了一种简单的语义转移策略,用于显式转换已见类别的学习嵌入,以更好地适应未见类别的底层结构。因此,我们的ZSECOC继承了ECOC的有利特征,并克服了域移,使其对ZSAR具有更强的辨别能力。我们以奥林匹克体育、HMDB51和UCF101这三个现实行动基准对ZSECOC进行了系统评价。实验结果清楚地表明,ZSECOC方法优于目前最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信