A Feature Regularization Based Meta-Learning Framework for Generalizing Prostate Mri Segmentation

Hui Wang, Zeyu Zhang, Bo Zhang, Y. Mi, Jingyun Wu, Haiwen Huang, Zibo Ma, Wendong Wang
{"title":"A Feature Regularization Based Meta-Learning Framework for Generalizing Prostate Mri Segmentation","authors":"Hui Wang, Zeyu Zhang, Bo Zhang, Y. Mi, Jingyun Wu, Haiwen Huang, Zibo Ma, Wendong Wang","doi":"10.1109/ISBI52829.2022.9761564","DOIUrl":null,"url":null,"abstract":"Magnetic Resonance Imaging acquired by different operators and devices often vary greatly, causing the domain shift problem, where deep learning models trained from existing data sources perform poorly on other data sources. This paper proposes a novel feature regularization based meta learning framework to address this problem. In particular, we design a domain discriminator module to regularize the encoder to extract domain-invariant features, and an image reconstruction module to regularize the shape compactness of predictions for target domain data. We evaluate our method on three public prostate MRI datasets. Experimental results show that our approach has better segmentation performance and more powerful generalization performance.","PeriodicalId":6827,"journal":{"name":"2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)","volume":"109 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI52829.2022.9761564","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Magnetic Resonance Imaging acquired by different operators and devices often vary greatly, causing the domain shift problem, where deep learning models trained from existing data sources perform poorly on other data sources. This paper proposes a novel feature regularization based meta learning framework to address this problem. In particular, we design a domain discriminator module to regularize the encoder to extract domain-invariant features, and an image reconstruction module to regularize the shape compactness of predictions for target domain data. We evaluate our method on three public prostate MRI datasets. Experimental results show that our approach has better segmentation performance and more powerful generalization performance.
基于特征正则化的元学习框架泛化前列腺Mri分割
不同操作人员和设备获得的磁共振成像通常差异很大,导致域移位问题,其中从现有数据源训练的深度学习模型在其他数据源上表现不佳。本文提出了一种基于特征正则化的元学习框架来解决这个问题。特别地,我们设计了一个域鉴别器模块来正则化编码器以提取域不变特征,以及一个图像重建模块来正则化目标域数据预测的形状紧密度。我们在三个公开的前列腺MRI数据集上评估了我们的方法。实验结果表明,该方法具有较好的分割性能和较强的泛化性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信