Recurrent Convolutional Neural Network for Sequential Recommendation

Chengfeng Xu, Pengpeng Zhao, Yanchi Liu, Jiajie Xu, V. Sheng, Zhiming Cui, Xiaofang Zhou, Hui Xiong
{"title":"Recurrent Convolutional Neural Network for Sequential Recommendation","authors":"Chengfeng Xu, Pengpeng Zhao, Yanchi Liu, Jiajie Xu, V. Sheng, Zhiming Cui, Xiaofang Zhou, Hui Xiong","doi":"10.1145/3308558.3313408","DOIUrl":null,"url":null,"abstract":"The sequential recommendation, which models sequential behavioral patterns among users for the recommendation, plays a critical role in recommender systems. However, the state-of-the-art Recurrent Neural Networks (RNN) solutions rarely consider the non-linear feature interactions and non-monotone short-term sequential patterns, which are essential for user behavior modeling in sparse sequence data. In this paper, we propose a novel Recurrent Convolutional Neural Network model (RCNN). It not only utilizes the recurrent architecture of RNN to capture complex long-term dependencies, but also leverages the convolutional operation of Convolutional Neural Network (CNN) model to extract short-term sequential patterns among recurrent hidden states. Specifically, we first generate a hidden state at each time step with the recurrent layer. Then the recent hidden states are regarded as an “image”, and RCNN searches non-linear feature interactions and non-monotone local patterns via intra-step horizontal and inter-step vertical convolutional filters, respectively. Moreover, the output of convolutional filters and the hidden state are concatenated and fed into a fully-connected layer to generate the recommendation. Finally, we evaluate the proposed model using four real-world datasets from various application scenarios. The experimental results show that our model RCNN significantly outperforms the state-of-the-art approaches on sequential recommendation.","PeriodicalId":23013,"journal":{"name":"The World Wide Web Conference","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"94","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The World Wide Web Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3308558.3313408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 94

Abstract

The sequential recommendation, which models sequential behavioral patterns among users for the recommendation, plays a critical role in recommender systems. However, the state-of-the-art Recurrent Neural Networks (RNN) solutions rarely consider the non-linear feature interactions and non-monotone short-term sequential patterns, which are essential for user behavior modeling in sparse sequence data. In this paper, we propose a novel Recurrent Convolutional Neural Network model (RCNN). It not only utilizes the recurrent architecture of RNN to capture complex long-term dependencies, but also leverages the convolutional operation of Convolutional Neural Network (CNN) model to extract short-term sequential patterns among recurrent hidden states. Specifically, we first generate a hidden state at each time step with the recurrent layer. Then the recent hidden states are regarded as an “image”, and RCNN searches non-linear feature interactions and non-monotone local patterns via intra-step horizontal and inter-step vertical convolutional filters, respectively. Moreover, the output of convolutional filters and the hidden state are concatenated and fed into a fully-connected layer to generate the recommendation. Finally, we evaluate the proposed model using four real-world datasets from various application scenarios. The experimental results show that our model RCNN significantly outperforms the state-of-the-art approaches on sequential recommendation.
序列推荐的递归卷积神经网络
顺序推荐在推荐系统中起着至关重要的作用,它对用户之间的顺序行为模式进行了建模。然而,最先进的递归神经网络(RNN)解决方案很少考虑非线性特征交互和非单调短期序列模式,而这些对于稀疏序列数据中的用户行为建模至关重要。本文提出了一种新的递归卷积神经网络模型(RCNN)。它不仅利用RNN的循环架构来捕获复杂的长期依赖关系,而且利用卷积神经网络(CNN)模型的卷积运算来提取循环隐藏状态之间的短期序列模式。具体来说,我们首先用循环层在每个时间步长生成一个隐藏状态。然后将最近的隐藏状态视为“图像”,RCNN分别通过阶内水平卷积滤波器和阶间垂直卷积滤波器搜索非线性特征交互和非单调局部模式。此外,将卷积滤波器的输出和隐藏状态连接并馈送到全连接层以生成推荐。最后,我们使用来自不同应用场景的四个真实数据集来评估所提出的模型。实验结果表明,我们的模型RCNN在顺序推荐方面明显优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信