Surrogate optimization of energy retrofits in domestic building stocks using household carbon valuations

IF 2.2 4区 工程技术 Q2 CONSTRUCTION & BUILDING TECHNOLOGY
James Hey, Peer-Olaf Siebers, P. Nathanail, Ender Ozcan, D. Robinson
{"title":"Surrogate optimization of energy retrofits in domestic building stocks using household carbon valuations","authors":"James Hey, Peer-Olaf Siebers, P. Nathanail, Ender Ozcan, D. Robinson","doi":"10.1080/19401493.2022.2106309","DOIUrl":null,"url":null,"abstract":"Modelling energy retrofit adoption in domestic urban building stocks is vital for policymakers aiming to reduce emissions. The use of surrogate models to evaluate building performance combined with optimization procedures can optimize small building stocks but are insufficient at the urban scale. Recent methods train neural networks using samples of near-optimal solutions further decreasing the computational cost of optimization. However, these models do not make definitive predictions of decision makers with given environmental preferences. To rectify this, we extend the method by assigning a carbon valuation to households to derive their optimal retrofit solutions. By including the carbon valuation when training the predictive model, we can analyze the impact of households' changing attitudes to emissions. To demonstrate this method we construct an agent-based model of Nottingham, finding that simulated government campaigns to boost environmentalism improve both the number of retrofits performed and the mean emissions reduction of each installation.","PeriodicalId":49168,"journal":{"name":"Journal of Building Performance Simulation","volume":"45 1","pages":"16 - 37"},"PeriodicalIF":2.2000,"publicationDate":"2022-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Building Performance Simulation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/19401493.2022.2106309","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 2

Abstract

Modelling energy retrofit adoption in domestic urban building stocks is vital for policymakers aiming to reduce emissions. The use of surrogate models to evaluate building performance combined with optimization procedures can optimize small building stocks but are insufficient at the urban scale. Recent methods train neural networks using samples of near-optimal solutions further decreasing the computational cost of optimization. However, these models do not make definitive predictions of decision makers with given environmental preferences. To rectify this, we extend the method by assigning a carbon valuation to households to derive their optimal retrofit solutions. By including the carbon valuation when training the predictive model, we can analyze the impact of households' changing attitudes to emissions. To demonstrate this method we construct an agent-based model of Nottingham, finding that simulated government campaigns to boost environmentalism improve both the number of retrofits performed and the mean emissions reduction of each installation.
利用家庭碳价值对国内建筑存量能源改造进行替代优化
对国内城市建筑存量的能源改造采用建模对于旨在减少排放的政策制定者至关重要。使用替代模型来评估建筑性能并结合优化程序可以优化小型建筑存量,但在城市规模上是不够的。最近的方法使用接近最优解的样本来训练神经网络,进一步降低了优化的计算成本。然而,这些模型并不能对具有特定环境偏好的决策者做出明确的预测。为了纠正这一点,我们扩展了该方法,为家庭分配碳估值,以获得最佳的改造解决方案。通过在训练预测模型时纳入碳价值,我们可以分析家庭对排放态度变化的影响。为了证明这种方法,我们构建了一个基于主体的诺丁汉模型,发现模拟的政府运动促进了环境保护,提高了进行改造的数量和每个装置的平均排放量减少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Building Performance Simulation
Journal of Building Performance Simulation CONSTRUCTION & BUILDING TECHNOLOGY-
CiteScore
5.50
自引率
12.00%
发文量
55
审稿时长
12 months
期刊介绍: The Journal of Building Performance Simulation (JBPS) aims to make a substantial and lasting contribution to the international building community by supporting our authors and the high-quality, original research they submit. The journal also offers a forum for original review papers and researched case studies We welcome building performance simulation contributions that explore the following topics related to buildings and communities: -Theoretical aspects related to modelling and simulating the physical processes (thermal, air flow, moisture, lighting, acoustics). -Theoretical aspects related to modelling and simulating conventional and innovative energy conversion, storage, distribution, and control systems. -Theoretical aspects related to occupants, weather data, and other boundary conditions. -Methods and algorithms for optimizing the performance of buildings and communities and the systems which service them, including interaction with the electrical grid. -Uncertainty, sensitivity analysis, and calibration. -Methods and algorithms for validating models and for verifying solution methods and tools. -Development and validation of controls-oriented models that are appropriate for model predictive control and/or automated fault detection and diagnostics. -Techniques for educating and training tool users. -Software development techniques and interoperability issues with direct applicability to building performance simulation. -Case studies involving the application of building performance simulation for any stage of the design, construction, commissioning, operation, or management of buildings and the systems which service them are welcomed if they include validation or aspects that make a novel contribution to the knowledge base.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信