Aluminum Powder Preparation for Additive Manufacturing Using Electrostatic Classification

A. Shinkaryov, M. Cherkasova, I. Pelevin, D. Ozherelkov, S. V. Chernyshikhin, N. Kharitonova, A. Gromov, A. Nalivaiko
{"title":"Aluminum Powder Preparation for Additive Manufacturing Using Electrostatic Classification","authors":"A. Shinkaryov, M. Cherkasova, I. Pelevin, D. Ozherelkov, S. V. Chernyshikhin, N. Kharitonova, A. Gromov, A. Nalivaiko","doi":"10.3390/COATINGS11060629","DOIUrl":null,"url":null,"abstract":"This work aims to study the possibility of using an electrostatic drum-type separator to prepare a powder with a narrow size distribution curve for usage in additive manufacturing. The size distributions of the uncoated commercial aluminum powders ASP-30, ASP-22, and ASP-5 were analyzed. It was shown that the powders ASP-30 and ASP-22 have similar asymmetric distributions with a SPAN of 1.480 and 1.756, respectively. ASP-5 powder, in turn, has a narrow distribution with a SPAN of 0.869. ASP-30 powder was chosen for further experiment because, traditionally, separators are used to classify large-sized materials with particle size more than 100 μm. The optimal mode of electrostatic classification was proposed for the selected powder. Various classification methods, including centrifugal and electrostatic, were compared. The powders before and after classification were studied by XRD, SEM, TEM, and TG–DSC analyses. The obtained results showed that electrostatic classification does not lead to the formation of coatings on the processed powders. Electrostatic separation effectively narrows the particle size distribution, making it a suitable and valuable method to classify initial powders for additive manufacturing.","PeriodicalId":22482,"journal":{"name":"THE Coatings","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"THE Coatings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/COATINGS11060629","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This work aims to study the possibility of using an electrostatic drum-type separator to prepare a powder with a narrow size distribution curve for usage in additive manufacturing. The size distributions of the uncoated commercial aluminum powders ASP-30, ASP-22, and ASP-5 were analyzed. It was shown that the powders ASP-30 and ASP-22 have similar asymmetric distributions with a SPAN of 1.480 and 1.756, respectively. ASP-5 powder, in turn, has a narrow distribution with a SPAN of 0.869. ASP-30 powder was chosen for further experiment because, traditionally, separators are used to classify large-sized materials with particle size more than 100 μm. The optimal mode of electrostatic classification was proposed for the selected powder. Various classification methods, including centrifugal and electrostatic, were compared. The powders before and after classification were studied by XRD, SEM, TEM, and TG–DSC analyses. The obtained results showed that electrostatic classification does not lead to the formation of coatings on the processed powders. Electrostatic separation effectively narrows the particle size distribution, making it a suitable and valuable method to classify initial powders for additive manufacturing.
静电分级制备增材制造用铝粉
本工作旨在研究使用静电滚筒式分离器制备具有窄粒度分布曲线的粉末用于增材制造的可能性。对未包覆的商品铝粉ASP-30、ASP-22和ASP-5的粒径分布进行了分析。结果表明,ASP-30和ASP-22具有相似的不对称分布,其SPAN分别为1.480和1.756。ASP-5粉的分布较窄,SPAN为0.869。选择ASP-30粉体进行进一步的实验,是因为传统上分离机用于分级粒度大于100 μm的大粒度物料。对所选粉体提出了最佳的静电分级方式。对各种分类方法进行了比较,包括离心分类和静电分类。采用XRD、SEM、TEM、TG-DSC对分级前后的粉末进行了分析。结果表明,静电分级不会导致粉末表面形成涂层。静电分离有效地缩小了粉体的粒度分布,是一种适用于增材制造的初始粉体分类方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信