Neurovascular coupling preserved in a chronic mouse model of Alzheimer’s disease: Methodology is critical

P. Sharp, K. Ameen-Ali, L. Boorman, S. Harris, S. Wharton, C. Howarth, O. Shabir, P. Redgrave, J. Berwick
{"title":"Neurovascular coupling preserved in a chronic mouse model of Alzheimer’s disease: Methodology is critical","authors":"P. Sharp, K. Ameen-Ali, L. Boorman, S. Harris, S. Wharton, C. Howarth, O. Shabir, P. Redgrave, J. Berwick","doi":"10.1177/0271678X19890830","DOIUrl":null,"url":null,"abstract":"Impaired neurovascular coupling has been suggested as an early pathogenic factor in Alzheimer’s disease (AD), which could serve as an early biomarker of cerebral pathology. We have established an anaesthetic regime to allow repeated measurements of neurovascular function over three months in the J20 mouse model of AD (J20-AD) and wild-type (WT) controls. Animals were 9–12 months old at the start of the experiment. Mice were chronically prepared with a cranial window through which 2-Dimensional optical imaging spectroscopy (2D-OIS) was used to generate functional maps of the cerebral blood volume and saturation changes evoked by whisker stimulation and vascular reactivity challenges. Unexpectedly, the hemodynamic responses were largely preserved in the J20-AD group. This result failed to confirm previous investigations using the J20-AD model. However, a final acute electrophysiology and 2D-OIS experiment was performed to measure both neural and hemodynamic responses concurrently. In this experiment, previously reported deficits in neurovascular coupling in the J20-AD model were observed. This suggests that J20-AD mice may be more susceptible to the physiologically stressing conditions of an acute experimental procedure compared to WT animals. These results therefore highlight the importance of experimental procedure when determining the characteristics of animal models of human disease.","PeriodicalId":15356,"journal":{"name":"Journal of Cerebral Blood Flow & Metabolism","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cerebral Blood Flow & Metabolism","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/0271678X19890830","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Impaired neurovascular coupling has been suggested as an early pathogenic factor in Alzheimer’s disease (AD), which could serve as an early biomarker of cerebral pathology. We have established an anaesthetic regime to allow repeated measurements of neurovascular function over three months in the J20 mouse model of AD (J20-AD) and wild-type (WT) controls. Animals were 9–12 months old at the start of the experiment. Mice were chronically prepared with a cranial window through which 2-Dimensional optical imaging spectroscopy (2D-OIS) was used to generate functional maps of the cerebral blood volume and saturation changes evoked by whisker stimulation and vascular reactivity challenges. Unexpectedly, the hemodynamic responses were largely preserved in the J20-AD group. This result failed to confirm previous investigations using the J20-AD model. However, a final acute electrophysiology and 2D-OIS experiment was performed to measure both neural and hemodynamic responses concurrently. In this experiment, previously reported deficits in neurovascular coupling in the J20-AD model were observed. This suggests that J20-AD mice may be more susceptible to the physiologically stressing conditions of an acute experimental procedure compared to WT animals. These results therefore highlight the importance of experimental procedure when determining the characteristics of animal models of human disease.
阿尔茨海默病慢性小鼠模型中保存的神经血管耦合:方法学至关重要
神经血管耦合受损已被认为是阿尔茨海默病(AD)的早期致病因素,可作为大脑病理的早期生物标志物。我们建立了一个麻醉方案,允许在三个月内重复测量J20 AD小鼠模型(J20-AD)和野生型(WT)对照的神经血管功能。实验开始时,动物为9-12个月大。小鼠长期颅窗制备,通过二维光学成像光谱(2D-OIS)生成由须刺激和血管反应性挑战引起的脑血容量和饱和度变化的功能图。出乎意料的是,J20-AD组的血流动力学反应在很大程度上得以保留。这一结果未能证实先前使用J20-AD模型进行的调查。然而,最后进行急性电生理和2D-OIS实验,同时测量神经和血液动力学反应。在本实验中,我们观察到了先前报道的J20-AD模型中神经血管偶联的缺陷。这表明,与WT动物相比,J20-AD小鼠可能更容易受到急性实验过程的生理应激条件的影响。因此,这些结果强调了在确定人类疾病动物模型的特征时实验程序的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信