Simplified Josephson-junction fabrication process for reproducibly high-performance superconducting qubits

A. Osman, J. Simon, A. Bengtsson, S. Kosen, P. Krantz, D. P. Lozano, M. Scigliuzzo, P. Delsing, J. Bylander, A. Fadavi Roudsari
{"title":"Simplified Josephson-junction fabrication process for reproducibly high-performance superconducting qubits","authors":"A. Osman, J. Simon, A. Bengtsson, S. Kosen, P. Krantz, D. P. Lozano, M. Scigliuzzo, P. Delsing, J. Bylander, A. Fadavi Roudsari","doi":"10.1063/5.0037093","DOIUrl":null,"url":null,"abstract":"We introduce a simplified fabrication technique for Josephson junctions and demonstrate superconducting Xmon qubits with $T_1$ relaxation times averaging above 50$~\\mu$s ($Q>$1.5$\\times$ 10$^6$). Current shadow-evaporation techniques for aluminum-based Josephson junctions require a separate lithography step to deposit a patch that makes a galvanic, superconducting connection between the junction electrodes and the circuit wiring layer. The patch connection eliminates parasitic junctions, which otherwise contribute significantly to dielectric loss. In our patch-integrated cross-type (PICT) junction technique, we use one lithography step and one vacuum cycle to evaporate both the junction electrodes and the patch. In a study of more than 3600 junctions, we show an average resistance variation of 3.7$\\%$ on a wafer that contains forty 0.5$\\times$0.5-cm$^2$ chips, with junction areas ranging between 0.01 and 0.16 $\\mu$m$^2$. The average on-chip spread in resistance is 2.7$\\%$, with 20 chips varying between 1.4 and 2$\\%$. For the junction sizes used for transmon qubits, we deduce a wafer-level transition-frequency variation of 1.7-2.5$\\%$. We show that 60-70$\\%$ of this variation is attributed to junction-area fluctuations, while the rest is caused by tunnel-junction inhomogeneity. Such high frequency predictability is a requirement for scaling-up the number of qubits in a quantum computer.","PeriodicalId":8514,"journal":{"name":"arXiv: Superconductivity","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"51","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Superconductivity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0037093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 51

Abstract

We introduce a simplified fabrication technique for Josephson junctions and demonstrate superconducting Xmon qubits with $T_1$ relaxation times averaging above 50$~\mu$s ($Q>$1.5$\times$ 10$^6$). Current shadow-evaporation techniques for aluminum-based Josephson junctions require a separate lithography step to deposit a patch that makes a galvanic, superconducting connection between the junction electrodes and the circuit wiring layer. The patch connection eliminates parasitic junctions, which otherwise contribute significantly to dielectric loss. In our patch-integrated cross-type (PICT) junction technique, we use one lithography step and one vacuum cycle to evaporate both the junction electrodes and the patch. In a study of more than 3600 junctions, we show an average resistance variation of 3.7$\%$ on a wafer that contains forty 0.5$\times$0.5-cm$^2$ chips, with junction areas ranging between 0.01 and 0.16 $\mu$m$^2$. The average on-chip spread in resistance is 2.7$\%$, with 20 chips varying between 1.4 and 2$\%$. For the junction sizes used for transmon qubits, we deduce a wafer-level transition-frequency variation of 1.7-2.5$\%$. We show that 60-70$\%$ of this variation is attributed to junction-area fluctuations, while the rest is caused by tunnel-junction inhomogeneity. Such high frequency predictability is a requirement for scaling-up the number of qubits in a quantum computer.
可重复高性能超导量子比特的简化约瑟夫森结制造工艺
我们介绍了一种简化的约瑟夫森结制造技术,并演示了超导Xmon量子比特的$T_1$弛豫时间平均大于50$~\mu$s ($Q>$1.5$\乘以$ 10$^6$)。目前用于铝基约瑟夫森结的阴影蒸发技术需要单独的光刻步骤来沉积贴片,从而在结电极和电路布线层之间形成电超导连接。贴片连接消除了寄生结,否则寄生结会显著增加介电损耗。在我们的贴片集成交叉型(PICT)结技术中,我们使用一个光刻步骤和一个真空循环来蒸发结电极和贴片。在对3600多个结的研究中,我们发现在包含40个0.5 × 0.5 cm芯片的晶圆上,平均电阻变化为3.7$ $ %$,结面积在0.01到0.16 $ $ mu$m$ $^2$之间。芯片上电阻的平均价差为2.7美元,其中20个芯片的价差在1.4美元到2美元之间。对于用于transmon量子位的结尺寸,我们推断出晶圆级的过渡频率变化为1.7-2.5美元。我们表明,这种变化的60- 70%归因于结区波动,而其余的是由隧道结的不均匀性引起的。这种高频率的可预测性是扩大量子计算机中量子位数量的必要条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信