{"title":"Protection Design and Lightning Zone Analysis for Unmanned Aerial Vehicle with Composite Wings","authors":"Hee-chae Woo, Yong-tae Kim","doi":"10.9766/kimst.2023.26.3.302","DOIUrl":null,"url":null,"abstract":"This paper describes the analysis of lightning strike zoning, the indirect lightning data simulation and the protection design for lightning indirect effects of equipment by lightning strike for unmanned aircraft consisting of composite wings. Through the analysis of lightning strike zoning according to the external shape of unmanned aerial vehicles, the structure areas that should be protected during lightning strike is derived, and the protection requirements of lightning indirect effects for flight critical equipments and equipment that must be operated upon lightning strike was derived. Lightning protection levels according to the location of mounting equipment and surrounding structure materials for each equipment was derived, and the protection design of the unmanned aerial vehicle with composite structures was also proposed from direct effect of lightning. Later, the lightning protection technology will be verified by the ground test of lightning direct and indirect effects.","PeriodicalId":17292,"journal":{"name":"Journal of the Korea Institute of Military Science and Technology","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korea Institute of Military Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9766/kimst.2023.26.3.302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper describes the analysis of lightning strike zoning, the indirect lightning data simulation and the protection design for lightning indirect effects of equipment by lightning strike for unmanned aircraft consisting of composite wings. Through the analysis of lightning strike zoning according to the external shape of unmanned aerial vehicles, the structure areas that should be protected during lightning strike is derived, and the protection requirements of lightning indirect effects for flight critical equipments and equipment that must be operated upon lightning strike was derived. Lightning protection levels according to the location of mounting equipment and surrounding structure materials for each equipment was derived, and the protection design of the unmanned aerial vehicle with composite structures was also proposed from direct effect of lightning. Later, the lightning protection technology will be verified by the ground test of lightning direct and indirect effects.