U-Net architecture variants for brain tumor segmentation of histogram corrected images

IF 0.3 Q4 COMPUTER SCIENCE, THEORY & METHODS
Szidónia Lefkovits, László Lefkovits
{"title":"U-Net architecture variants for brain tumor segmentation of histogram corrected images","authors":"Szidónia Lefkovits, László Lefkovits","doi":"10.2478/ausi-2022-0004","DOIUrl":null,"url":null,"abstract":"Abstract In this paper we propose to create an end-to-end brain tumor segmentation system that applies three variants of the well-known U-Net convolutional neural networks. In our results we obtain and analyse the detection performances of U-Net, VGG16-UNet and ResNet-UNet on the BraTS2020 training dataset. Further, we inspect the behavior of the ensemble model obtained as the weighted response of the three CNN models. We introduce essential preprocessing and post-processing steps so as to improve the detection performances. The original images were corrected and the different intensity ranges were transformed into the 8-bit grayscale domain to uniformize the tissue intensities, while preserving the original histogram shapes. For post-processing we apply region connectedness onto the whole tumor and conversion of background pixels into necrosis inside the whole tumor. As a result, we present the Dice scores of our system obtained for WT (whole tumor), TC (tumor core) and ET (enhanced tumor) on the BraTS2020 training dataset.","PeriodicalId":41480,"journal":{"name":"Acta Universitatis Sapientiae Informatica","volume":"25 1","pages":"49 - 74"},"PeriodicalIF":0.3000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Universitatis Sapientiae Informatica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ausi-2022-0004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 3

Abstract

Abstract In this paper we propose to create an end-to-end brain tumor segmentation system that applies three variants of the well-known U-Net convolutional neural networks. In our results we obtain and analyse the detection performances of U-Net, VGG16-UNet and ResNet-UNet on the BraTS2020 training dataset. Further, we inspect the behavior of the ensemble model obtained as the weighted response of the three CNN models. We introduce essential preprocessing and post-processing steps so as to improve the detection performances. The original images were corrected and the different intensity ranges were transformed into the 8-bit grayscale domain to uniformize the tissue intensities, while preserving the original histogram shapes. For post-processing we apply region connectedness onto the whole tumor and conversion of background pixels into necrosis inside the whole tumor. As a result, we present the Dice scores of our system obtained for WT (whole tumor), TC (tumor core) and ET (enhanced tumor) on the BraTS2020 training dataset.
U-Net结构变体对直方图校正图像的脑肿瘤分割
在本文中,我们提出了一个端到端的脑肿瘤分割系统,该系统应用了众所周知的U-Net卷积神经网络的三种变体。在我们的结果中,我们获得并分析了U-Net, VGG16-UNet和ResNet-UNet在BraTS2020训练数据集上的检测性能。进一步,我们考察了作为三个CNN模型的加权响应得到的集成模型的行为。为了提高检测性能,我们引入了必要的预处理和后处理步骤。在保留原始直方图形状的同时,对原始图像进行校正,将不同强度范围变换到8位灰度域,使组织强度均匀化。对于后处理,我们将区域连通性应用到整个肿瘤上,并将背景像素转换为整个肿瘤内部的坏死。因此,我们给出了我们的系统在BraTS2020训练数据集上获得的WT(整个肿瘤)、TC(肿瘤核心)和ET(增强肿瘤)的Dice分数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Universitatis Sapientiae Informatica
Acta Universitatis Sapientiae Informatica COMPUTER SCIENCE, THEORY & METHODS-
自引率
0.00%
发文量
9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信