The ideal theory of intersections of prime divisors dominating a normal Noetherian local domain of dimension two

B. Olberding, W. Heinzer
{"title":"The ideal theory of intersections of prime divisors dominating a normal Noetherian local domain of dimension two","authors":"B. Olberding, W. Heinzer","doi":"10.4171/rsmup/62","DOIUrl":null,"url":null,"abstract":"Let $R$ be a normal Noetherian local domain of Krull dimension two. We examine intersections of rank one discrete valuation rings that birationally dominate $R$. We restrict to the class of prime divisors that dominate $R$ and show that if a collection of such prime divisors is taken below a certain ``level,'' then the intersection is an almost Dedekind domain having the property that every nonzero ideal can be represented uniquely as an irredundant intersection of powers of maximal ideals.","PeriodicalId":20997,"journal":{"name":"Rendiconti del Seminario Matematico della Università di Padova","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rendiconti del Seminario Matematico della Università di Padova","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/rsmup/62","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let $R$ be a normal Noetherian local domain of Krull dimension two. We examine intersections of rank one discrete valuation rings that birationally dominate $R$. We restrict to the class of prime divisors that dominate $R$ and show that if a collection of such prime divisors is taken below a certain ``level,'' then the intersection is an almost Dedekind domain having the property that every nonzero ideal can be represented uniquely as an irredundant intersection of powers of maximal ideals.
主宰二维正规诺瑟局部区域的素数的交点的理想理论
设$R$是Krull维二的正规noether局部定义域。我们检查秩一离散估值环的交叉点,它们在两方面主导$R$。我们限制了支配R的素数因子的类别,并证明了如果这些素数因子的集合低于某个“水平”,那么这个交点是一个几乎Dedekind定义域,它具有这样的性质,即每个非零理想都可以唯一地表示为极大理想的幂的无冗余交点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信