Nearly self-conjugate integer partitions

Q4 Mathematics
John M. Campbell, Shane Chern
{"title":"Nearly self-conjugate integer partitions","authors":"John M. Campbell, Shane Chern","doi":"10.53733/217","DOIUrl":null,"url":null,"abstract":"We investigate integer partitions $\\lambda$ of $n$ that are nearly self-conjugate in the sense that there are $n - 1$ overlapping cells among the Ferrers diagram of $\\lambda$ and its transpose, by establishing a correspondence, through the method of combinatorial telescoping, to partitions of $n$ in which (i).~there exists at least one even part; (ii).~any even part is of size $2$; (iii).~the odd parts are distinct; and (iv).~no odd part is of size $1$. In particular, this correspondence confirms a conjecture that had been given in the OEIS.","PeriodicalId":30137,"journal":{"name":"New Zealand Journal of Mathematics","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Zealand Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53733/217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate integer partitions $\lambda$ of $n$ that are nearly self-conjugate in the sense that there are $n - 1$ overlapping cells among the Ferrers diagram of $\lambda$ and its transpose, by establishing a correspondence, through the method of combinatorial telescoping, to partitions of $n$ in which (i).~there exists at least one even part; (ii).~any even part is of size $2$; (iii).~the odd parts are distinct; and (iv).~no odd part is of size $1$. In particular, this correspondence confirms a conjecture that had been given in the OEIS.
几乎自共轭整数分割
本文研究了$n$的整数分区$\ λ $及其转置之间存在$n - 1$重叠单元的近自共轭的整数分区$\ λ $,通过组合伸缩的方法建立了$n$分区的对应关系,其中(i).~至少存在一个偶部;(ii) ~任何偶数部分的尺寸为$2$;(iii) ~奇数部分是不同的;(iv) ~没有奇数部分的大小为$1$。特别是,这种通信证实了OEIS中提出的一个猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
New Zealand Journal of Mathematics
New Zealand Journal of Mathematics Mathematics-Algebra and Number Theory
CiteScore
1.10
自引率
0.00%
发文量
11
审稿时长
50 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信