Implicit representation and scene reconstruction from probability density functions

S. Seitz, P. Anandan
{"title":"Implicit representation and scene reconstruction from probability density functions","authors":"S. Seitz, P. Anandan","doi":"10.1109/CVPR.1999.784604","DOIUrl":null,"url":null,"abstract":"A technique is presented for representing linear features as probability density functions in two or three dimensions. Three chief advantages of this approach are (1) a unified representation and algebra for manipulating points, lines, and planes, (2) seamless incorporation of uncertainty information, and (3) a very simple recursive solution for maximum likelihood shape estimation. Applications to uncalibrated affine scene reconstruction are presented, with results on images of an outdoor environment.","PeriodicalId":20644,"journal":{"name":"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)","volume":"22 1","pages":"28-34 Vol. 2"},"PeriodicalIF":0.0000,"publicationDate":"1999-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.1999.784604","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

A technique is presented for representing linear features as probability density functions in two or three dimensions. Three chief advantages of this approach are (1) a unified representation and algebra for manipulating points, lines, and planes, (2) seamless incorporation of uncertainty information, and (3) a very simple recursive solution for maximum likelihood shape estimation. Applications to uncalibrated affine scene reconstruction are presented, with results on images of an outdoor environment.
基于概率密度函数的隐式表示和场景重建
提出了一种将线性特征表示为二维或三维概率密度函数的方法。这种方法的三个主要优点是:(1)操作点、线和面的统一表示和代数,(2)不确定性信息的无缝结合,以及(3)最大似然形状估计的非常简单的递归解决方案。介绍了非校准仿射场景重建的应用,并给出了室外环境图像的重建结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信