Lightweight Monolithic Microcell CPV for Space

Christian J. Ruud, J. Price, Brent Fisher, Baoming Wang, N. Giebink
{"title":"Lightweight Monolithic Microcell CPV for Space","authors":"Christian J. Ruud, J. Price, Brent Fisher, Baoming Wang, N. Giebink","doi":"10.1109/PVSC.2018.8548170","DOIUrl":null,"url":null,"abstract":"Concentrating photovoltaics (CPV) can increase the efficiency and reduce the cost of photovoltaic power in space. We introduce a new monolithic, ultrathin, and lightweight CPV paradigm based on a transfer-printed microscale solar cell array. In our reflective design, the microcell array is embedded in a radiation-tolerant glass optic that delivers 83% optical efficiency with a $\\pm mathbf{77} ^{circ}$ acceptance angle at $32 \\times$ geometric gain. The system is $<1$ mm thick and capable of achieving a specific power density of 352 W/kg using state-of-the-art triple junction microcells.","PeriodicalId":6558,"journal":{"name":"2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC)","volume":"54 1","pages":"3535-3538"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.2018.8548170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Concentrating photovoltaics (CPV) can increase the efficiency and reduce the cost of photovoltaic power in space. We introduce a new monolithic, ultrathin, and lightweight CPV paradigm based on a transfer-printed microscale solar cell array. In our reflective design, the microcell array is embedded in a radiation-tolerant glass optic that delivers 83% optical efficiency with a $\pm mathbf{77} ^{circ}$ acceptance angle at $32 \times$ geometric gain. The system is $<1$ mm thick and capable of achieving a specific power density of 352 W/kg using state-of-the-art triple junction microcells.
用于太空的轻量级单片微单元CPV
聚光光伏(CPV)可以提高空间光伏发电效率,降低空间光伏发电成本。我们介绍了一种基于转移印刷微型太阳能电池阵列的新型单片、超薄、轻量化CPV范式。在我们的反射设计中,微单元阵列嵌入在耐辐射玻璃光学器件中,具有83%的光学效率和$\pm mathbf{77} ^{circ}$接收角,几何增益$32 \倍$。该系统厚度小于1毫米,使用最先进的三结微电池,能够实现352 W/kg的比功率密度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信