Marcello R. Napolitano , Yongkyu Song , Brad Seanor
{"title":"On-line parameter estimation for restructurable flight control systems","authors":"Marcello R. Napolitano , Yongkyu Song , Brad Seanor","doi":"10.1016/S1369-8869(00)00023-9","DOIUrl":null,"url":null,"abstract":"<div><p><span>This paper describes the results of a study where an on-line parameter identification (PID) technique is used for determining on-line the mathematical model of an aircraft that has sustained damage to a primary control surface. The mathematical model at post-failure conditions can then be used by a failure accommodation scheme to compute on-line the compensating control signal to command the remaining healthy control surfaces for a safe continuation and/or termination of the flight. Specific criteria for the use of an on-line PID for these critical flight conditions are first discussed. The methodology is illustrated through simulations of a fighter jet at </span>subsonic flight conditions featuring a novel modeling procedure to characterize the post-failure/damage aerodynamic conditions. The simulations have shown the potential of this on-line PID within a fault tolerant flight control system. The results have also highlighted the importance of conducting an ‘ad hoc’ small amplitude and short-duration PID maneuver immediately following a positive failure detection to enhance the reliability of the on-line estimated parameters used in the accommodation scheme.</p></div>","PeriodicalId":100070,"journal":{"name":"Aircraft Design","volume":"4 1","pages":"Pages 19-50"},"PeriodicalIF":0.0000,"publicationDate":"2001-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1369-8869(00)00023-9","citationCount":"40","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aircraft Design","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369886900000239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40
Abstract
This paper describes the results of a study where an on-line parameter identification (PID) technique is used for determining on-line the mathematical model of an aircraft that has sustained damage to a primary control surface. The mathematical model at post-failure conditions can then be used by a failure accommodation scheme to compute on-line the compensating control signal to command the remaining healthy control surfaces for a safe continuation and/or termination of the flight. Specific criteria for the use of an on-line PID for these critical flight conditions are first discussed. The methodology is illustrated through simulations of a fighter jet at subsonic flight conditions featuring a novel modeling procedure to characterize the post-failure/damage aerodynamic conditions. The simulations have shown the potential of this on-line PID within a fault tolerant flight control system. The results have also highlighted the importance of conducting an ‘ad hoc’ small amplitude and short-duration PID maneuver immediately following a positive failure detection to enhance the reliability of the on-line estimated parameters used in the accommodation scheme.