Boolean cumulants and subordination in free probability

Pub Date : 2019-07-26 DOI:10.1142/S2010326321500362
F. Lehner, K. Szpojankowski
{"title":"Boolean cumulants and subordination in free probability","authors":"F. Lehner, K. Szpojankowski","doi":"10.1142/S2010326321500362","DOIUrl":null,"url":null,"abstract":"Subordination is the basis of the analytic approach to free additive and multiplicative convolution. We extend this approach to a more general setting and prove that the conditional expectation [Formula: see text] for free random variables [Formula: see text] and a Borel function [Formula: see text] is a resolvent again. This result allows the explicit calculation of the distribution of noncommutative polynomials of the form [Formula: see text]. The main tool is a new combinatorial formula for conditional expectations in terms of Boolean cumulants and a corresponding analytic formula for conditional expectations of resolvents, generalizing subordination formulas for both additive and multiplicative free convolutions. In the final section, we illustrate the results with step by step explicit computations and an exposition of all necessary ingredients.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/S2010326321500362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Subordination is the basis of the analytic approach to free additive and multiplicative convolution. We extend this approach to a more general setting and prove that the conditional expectation [Formula: see text] for free random variables [Formula: see text] and a Borel function [Formula: see text] is a resolvent again. This result allows the explicit calculation of the distribution of noncommutative polynomials of the form [Formula: see text]. The main tool is a new combinatorial formula for conditional expectations in terms of Boolean cumulants and a corresponding analytic formula for conditional expectations of resolvents, generalizing subordination formulas for both additive and multiplicative free convolutions. In the final section, we illustrate the results with step by step explicit computations and an exposition of all necessary ingredients.
分享
查看原文
自由概率中的布尔累积量与隶属关系
隶属性是自由加性和乘法卷积解析方法的基础。我们将此方法扩展到更一般的设置,并证明了自由随机变量的条件期望[公式:见文本]和Borel函数[公式:见文本]是一个解决方案。这个结果允许显式地计算非交换多项式的分布,其形式为[公式:见文本]。主要工具是一个新的布尔累积量条件期望的组合公式和一个相应的解的条件期望的解析公式,推广了加性和乘性自由卷积的从属公式。在最后一节中,我们用一步一步的显式计算和所有必要成分的阐述来说明结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信