Boosting GPU Performance by Profiling-Based L1 Data Cache Bypassing

Y. Huangfu, Wei Zhang
{"title":"Boosting GPU Performance by Profiling-Based L1 Data Cache Bypassing","authors":"Y. Huangfu, Wei Zhang","doi":"10.1109/CCGrid.2015.67","DOIUrl":null,"url":null,"abstract":"Cache memories have been introduced in recent generations of Graphics Processing Units (GPUs) to benefit general-purpose computing on GPUs (GPGPUs). In this work, we analyze the memory access patterns of GPGPU applications and propose a cost-effective profiling-based method to identify the data accesses that should bypass the L1 data cache to improve performance. The evaluation indicates that the proposed L1 cache bypassing can improve the GPU performance by 13.8% on average.","PeriodicalId":6664,"journal":{"name":"2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing","volume":"9 1","pages":"1119-1122"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGrid.2015.67","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Cache memories have been introduced in recent generations of Graphics Processing Units (GPUs) to benefit general-purpose computing on GPUs (GPGPUs). In this work, we analyze the memory access patterns of GPGPU applications and propose a cost-effective profiling-based method to identify the data accesses that should bypass the L1 data cache to improve performance. The evaluation indicates that the proposed L1 cache bypassing can improve the GPU performance by 13.8% on average.
通过基于分析的L1数据缓存绕过来提高GPU性能
在最近几代图形处理单元(gpu)中引入了缓存存储器,以便在gpu (gpgpu)上进行通用计算。在这项工作中,我们分析了GPGPU应用程序的内存访问模式,并提出了一种经济有效的基于分析的方法来识别应该绕过L1数据缓存以提高性能的数据访问。评估结果表明,所提出的L1缓存绕过可以使GPU性能平均提高13.8%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信