RETURN TIME STATISTICS OF EXTREME EVENTS IN DISCRETE NONLINEAR LATTICES

A. Mančić, A. Maluckov
{"title":"RETURN TIME STATISTICS OF EXTREME EVENTS IN DISCRETE NONLINEAR LATTICES","authors":"A. Mančić, A. Maluckov","doi":"10.2298/FUPCT1701035M","DOIUrl":null,"url":null,"abstract":"Time statistics of extreme events (EEs) in one-dimensional discrete Salerno lattices is investigated numerically. We show that the dependence of the mean return time of EEs on the amplitude threshold can be used as a criterion to differentiate between various dynamical regimes of the extreme events. Also, we found that dispersion of points on the time probability distribution curve can be an indicator of the appearance of EEs in the system, but it has to be complemented with other statistical measures. The results obtained here can be used to distinguish between different dynamical regimes and as identifiers of the EEs existence in the lattice system.","PeriodicalId":12248,"journal":{"name":"Facta Universitatis - Series: Physics, Chemistry and Technology","volume":"10 1","pages":"035-044"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Facta Universitatis - Series: Physics, Chemistry and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/FUPCT1701035M","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Time statistics of extreme events (EEs) in one-dimensional discrete Salerno lattices is investigated numerically. We show that the dependence of the mean return time of EEs on the amplitude threshold can be used as a criterion to differentiate between various dynamical regimes of the extreme events. Also, we found that dispersion of points on the time probability distribution curve can be an indicator of the appearance of EEs in the system, but it has to be complemented with other statistical measures. The results obtained here can be used to distinguish between different dynamical regimes and as identifiers of the EEs existence in the lattice system.
离散非线性格中极端事件的返回时间统计
对一维离散Salerno格中极端事件的时间统计量进行了数值研究。结果表明,电场的平均返回时间对振幅阈值的依赖性可以作为区分极端事件的各种动力机制的判据。此外,我们发现时间概率分布曲线上点的离散度可以作为系统中EEs出现的一个指标,但它必须与其他统计度量相辅相成。所得结果可用于区分不同的动力学状态,并作为晶格系统中EEs存在的标识符。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信